Metamath Proof Explorer


Theorem ontri1

Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003)

Ref Expression
Assertion ontri1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐴 ∈ On → Ord 𝐴 )
2 eloni ( 𝐵 ∈ On → Ord 𝐵 )
3 ordtri1 ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )