| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssequn1 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∪  𝐵 )  =  𝐵 ) | 
						
							| 2 |  | eleq1a | ⊢ ( 𝐵  ∈  On  →  ( ( 𝐴  ∪  𝐵 )  =  𝐵  →  ( 𝐴  ∪  𝐵 )  ∈  On ) ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ∪  𝐵 )  =  𝐵  →  ( 𝐴  ∪  𝐵 )  ∈  On ) ) | 
						
							| 4 | 1 3 | biimtrid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  →  ( 𝐴  ∪  𝐵 )  ∈  On ) ) | 
						
							| 5 |  | ssequn2 | ⊢ ( 𝐵  ⊆  𝐴  ↔  ( 𝐴  ∪  𝐵 )  =  𝐴 ) | 
						
							| 6 |  | eleq1a | ⊢ ( 𝐴  ∈  On  →  ( ( 𝐴  ∪  𝐵 )  =  𝐴  →  ( 𝐴  ∪  𝐵 )  ∈  On ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ∪  𝐵 )  =  𝐴  →  ( 𝐴  ∪  𝐵 )  ∈  On ) ) | 
						
							| 8 | 5 7 | biimtrid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  ⊆  𝐴  →  ( 𝐴  ∪  𝐵 )  ∈  On ) ) | 
						
							| 9 |  | eloni | ⊢ ( 𝐴  ∈  On  →  Ord  𝐴 ) | 
						
							| 10 |  | eloni | ⊢ ( 𝐵  ∈  On  →  Ord  𝐵 ) | 
						
							| 11 |  | ordtri2or2 | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 ) ) | 
						
							| 12 | 9 10 11 | syl2an | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 ) ) | 
						
							| 13 | 4 8 12 | mpjaod | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ∪  𝐵 )  ∈  On ) |