Metamath Proof Explorer


Theorem onun2

Description: The union of two ordinals is an ordinal. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Assertion onun2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ) ∈ On )

Proof

Step Hyp Ref Expression
1 ssequn1 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ) = 𝐵 )
2 eleq1a ( 𝐵 ∈ On → ( ( 𝐴𝐵 ) = 𝐵 → ( 𝐴𝐵 ) ∈ On ) )
3 2 adantl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴𝐵 ) = 𝐵 → ( 𝐴𝐵 ) ∈ On ) )
4 1 3 syl5bi ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 → ( 𝐴𝐵 ) ∈ On ) )
5 ssequn2 ( 𝐵𝐴 ↔ ( 𝐴𝐵 ) = 𝐴 )
6 eleq1a ( 𝐴 ∈ On → ( ( 𝐴𝐵 ) = 𝐴 → ( 𝐴𝐵 ) ∈ On ) )
7 6 adantr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴𝐵 ) = 𝐴 → ( 𝐴𝐵 ) ∈ On ) )
8 5 7 syl5bi ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵𝐴 → ( 𝐴𝐵 ) ∈ On ) )
9 eloni ( 𝐴 ∈ On → Ord 𝐴 )
10 eloni ( 𝐵 ∈ On → Ord 𝐵 )
11 ordtri2or2 ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐵𝐴 ) )
12 9 10 11 syl2an ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐵𝐴 ) )
13 4 8 12 mpjaod ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ) ∈ On )