Step |
Hyp |
Ref |
Expression |
1 |
|
onssi.1 |
⊢ 𝐴 ∈ On |
2 |
1
|
onirri |
⊢ ¬ 𝐴 ∈ 𝐴 |
3 |
|
id |
⊢ ( 𝐴 = ∪ 𝐴 → 𝐴 = ∪ 𝐴 ) |
4 |
|
df-suc |
⊢ suc 𝑥 = ( 𝑥 ∪ { 𝑥 } ) |
5 |
4
|
eqeq2i |
⊢ ( 𝐴 = suc 𝑥 ↔ 𝐴 = ( 𝑥 ∪ { 𝑥 } ) ) |
6 |
|
unieq |
⊢ ( 𝐴 = ( 𝑥 ∪ { 𝑥 } ) → ∪ 𝐴 = ∪ ( 𝑥 ∪ { 𝑥 } ) ) |
7 |
5 6
|
sylbi |
⊢ ( 𝐴 = suc 𝑥 → ∪ 𝐴 = ∪ ( 𝑥 ∪ { 𝑥 } ) ) |
8 |
|
uniun |
⊢ ∪ ( 𝑥 ∪ { 𝑥 } ) = ( ∪ 𝑥 ∪ ∪ { 𝑥 } ) |
9 |
|
vex |
⊢ 𝑥 ∈ V |
10 |
9
|
unisn |
⊢ ∪ { 𝑥 } = 𝑥 |
11 |
10
|
uneq2i |
⊢ ( ∪ 𝑥 ∪ ∪ { 𝑥 } ) = ( ∪ 𝑥 ∪ 𝑥 ) |
12 |
8 11
|
eqtri |
⊢ ∪ ( 𝑥 ∪ { 𝑥 } ) = ( ∪ 𝑥 ∪ 𝑥 ) |
13 |
7 12
|
eqtrdi |
⊢ ( 𝐴 = suc 𝑥 → ∪ 𝐴 = ( ∪ 𝑥 ∪ 𝑥 ) ) |
14 |
|
tron |
⊢ Tr On |
15 |
|
eleq1 |
⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ∈ On ↔ suc 𝑥 ∈ On ) ) |
16 |
1 15
|
mpbii |
⊢ ( 𝐴 = suc 𝑥 → suc 𝑥 ∈ On ) |
17 |
|
trsuc |
⊢ ( ( Tr On ∧ suc 𝑥 ∈ On ) → 𝑥 ∈ On ) |
18 |
14 16 17
|
sylancr |
⊢ ( 𝐴 = suc 𝑥 → 𝑥 ∈ On ) |
19 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
20 |
|
ordtr |
⊢ ( Ord 𝑥 → Tr 𝑥 ) |
21 |
19 20
|
syl |
⊢ ( 𝑥 ∈ On → Tr 𝑥 ) |
22 |
|
df-tr |
⊢ ( Tr 𝑥 ↔ ∪ 𝑥 ⊆ 𝑥 ) |
23 |
21 22
|
sylib |
⊢ ( 𝑥 ∈ On → ∪ 𝑥 ⊆ 𝑥 ) |
24 |
18 23
|
syl |
⊢ ( 𝐴 = suc 𝑥 → ∪ 𝑥 ⊆ 𝑥 ) |
25 |
|
ssequn1 |
⊢ ( ∪ 𝑥 ⊆ 𝑥 ↔ ( ∪ 𝑥 ∪ 𝑥 ) = 𝑥 ) |
26 |
24 25
|
sylib |
⊢ ( 𝐴 = suc 𝑥 → ( ∪ 𝑥 ∪ 𝑥 ) = 𝑥 ) |
27 |
13 26
|
eqtrd |
⊢ ( 𝐴 = suc 𝑥 → ∪ 𝐴 = 𝑥 ) |
28 |
3 27
|
sylan9eqr |
⊢ ( ( 𝐴 = suc 𝑥 ∧ 𝐴 = ∪ 𝐴 ) → 𝐴 = 𝑥 ) |
29 |
9
|
sucid |
⊢ 𝑥 ∈ suc 𝑥 |
30 |
|
eleq2 |
⊢ ( 𝐴 = suc 𝑥 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ suc 𝑥 ) ) |
31 |
29 30
|
mpbiri |
⊢ ( 𝐴 = suc 𝑥 → 𝑥 ∈ 𝐴 ) |
32 |
31
|
adantr |
⊢ ( ( 𝐴 = suc 𝑥 ∧ 𝐴 = ∪ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
33 |
28 32
|
eqeltrd |
⊢ ( ( 𝐴 = suc 𝑥 ∧ 𝐴 = ∪ 𝐴 ) → 𝐴 ∈ 𝐴 ) |
34 |
2 33
|
mto |
⊢ ¬ ( 𝐴 = suc 𝑥 ∧ 𝐴 = ∪ 𝐴 ) |
35 |
34
|
imnani |
⊢ ( 𝐴 = suc 𝑥 → ¬ 𝐴 = ∪ 𝐴 ) |
36 |
35
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ¬ 𝐴 = ∪ 𝐴 ) |
37 |
|
onuni |
⊢ ( 𝐴 ∈ On → ∪ 𝐴 ∈ On ) |
38 |
1 37
|
ax-mp |
⊢ ∪ 𝐴 ∈ On |
39 |
1
|
onuniorsuci |
⊢ ( 𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴 ) |
40 |
39
|
ori |
⊢ ( ¬ 𝐴 = ∪ 𝐴 → 𝐴 = suc ∪ 𝐴 ) |
41 |
|
suceq |
⊢ ( 𝑥 = ∪ 𝐴 → suc 𝑥 = suc ∪ 𝐴 ) |
42 |
41
|
rspceeqv |
⊢ ( ( ∪ 𝐴 ∈ On ∧ 𝐴 = suc ∪ 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |
43 |
38 40 42
|
sylancr |
⊢ ( ¬ 𝐴 = ∪ 𝐴 → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |
44 |
36 43
|
impbii |
⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ 𝐴 = ∪ 𝐴 ) |
45 |
44
|
con2bii |
⊢ ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |