Metamath Proof Explorer


Theorem onxpdisj

Description: Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non . (Contributed by NM, 1-Jun-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion onxpdisj ( On ∩ ( V × V ) ) = ∅

Proof

Step Hyp Ref Expression
1 disj ( ( On ∩ ( V × V ) ) = ∅ ↔ ∀ 𝑥 ∈ On ¬ 𝑥 ∈ ( V × V ) )
2 on0eqel ( 𝑥 ∈ On → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) )
3 0nelxp ¬ ∅ ∈ ( V × V )
4 eleq1 ( 𝑥 = ∅ → ( 𝑥 ∈ ( V × V ) ↔ ∅ ∈ ( V × V ) ) )
5 3 4 mtbiri ( 𝑥 = ∅ → ¬ 𝑥 ∈ ( V × V ) )
6 0nelelxp ( 𝑥 ∈ ( V × V ) → ¬ ∅ ∈ 𝑥 )
7 6 con2i ( ∅ ∈ 𝑥 → ¬ 𝑥 ∈ ( V × V ) )
8 5 7 jaoi ( ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) → ¬ 𝑥 ∈ ( V × V ) )
9 2 8 syl ( 𝑥 ∈ On → ¬ 𝑥 ∈ ( V × V ) )
10 1 9 mprgbir ( On ∩ ( V × V ) ) = ∅