Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ On → 𝐴 ∈ V ) |
2 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
3 |
|
ordzsl |
⊢ ( Ord 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) |
4 |
|
3mix1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ 𝐴 = ∅ ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
6 |
|
3mix2 |
⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
8 |
|
3mix3 |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
9 |
5 7 8
|
3jaodan |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
10 |
3 9
|
sylan2b |
⊢ ( ( 𝐴 ∈ V ∧ Ord 𝐴 ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
11 |
1 2 10
|
syl2anc |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
12 |
|
0elon |
⊢ ∅ ∈ On |
13 |
|
eleq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ∈ On ↔ ∅ ∈ On ) ) |
14 |
12 13
|
mpbiri |
⊢ ( 𝐴 = ∅ → 𝐴 ∈ On ) |
15 |
|
suceloni |
⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) |
16 |
|
eleq1 |
⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ∈ On ↔ suc 𝑥 ∈ On ) ) |
17 |
15 16
|
syl5ibrcom |
⊢ ( 𝑥 ∈ On → ( 𝐴 = suc 𝑥 → 𝐴 ∈ On ) ) |
18 |
17
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → 𝐴 ∈ On ) |
19 |
|
limelon |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ On ) |
20 |
14 18 19
|
3jaoi |
⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) → 𝐴 ∈ On ) |
21 |
11 20
|
impbii |
⊢ ( 𝐴 ∈ On ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |