| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐴 ∈ On → 𝐴 ∈ V ) |
| 2 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
| 3 |
|
ordzsl |
⊢ ( Ord 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) |
| 4 |
|
3mix1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ 𝐴 = ∅ ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 6 |
|
3mix2 |
⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 8 |
|
3mix3 |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 9 |
5 7 8
|
3jaodan |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 10 |
3 9
|
sylan2b |
⊢ ( ( 𝐴 ∈ V ∧ Ord 𝐴 ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 11 |
1 2 10
|
syl2anc |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 12 |
|
0elon |
⊢ ∅ ∈ On |
| 13 |
|
eleq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ∈ On ↔ ∅ ∈ On ) ) |
| 14 |
12 13
|
mpbiri |
⊢ ( 𝐴 = ∅ → 𝐴 ∈ On ) |
| 15 |
|
onsuc |
⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) |
| 16 |
|
eleq1 |
⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ∈ On ↔ suc 𝑥 ∈ On ) ) |
| 17 |
15 16
|
syl5ibrcom |
⊢ ( 𝑥 ∈ On → ( 𝐴 = suc 𝑥 → 𝐴 ∈ On ) ) |
| 18 |
17
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → 𝐴 ∈ On ) |
| 19 |
|
limelon |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ On ) |
| 20 |
14 18 19
|
3jaoi |
⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) → 𝐴 ∈ On ) |
| 21 |
11 20
|
impbii |
⊢ ( 𝐴 ∈ On ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |