Description: An orthoposet has a zero element. ( h0elch analog.) (Contributed by NM, 12-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | op0cl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| op0cl.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| Assertion | op0cl | ⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0cl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | op0cl.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 4 | 1 3 2 | p0val | ⊢ ( 𝐾 ∈ OP → 0 = ( ( glb ‘ 𝐾 ) ‘ 𝐵 ) ) |
| 5 | id | ⊢ ( 𝐾 ∈ OP → 𝐾 ∈ OP ) | |
| 6 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
| 7 | 1 6 3 | op01dm | ⊢ ( 𝐾 ∈ OP → ( 𝐵 ∈ dom ( lub ‘ 𝐾 ) ∧ 𝐵 ∈ dom ( glb ‘ 𝐾 ) ) ) |
| 8 | 7 | simprd | ⊢ ( 𝐾 ∈ OP → 𝐵 ∈ dom ( glb ‘ 𝐾 ) ) |
| 9 | 1 3 5 8 | glbcl | ⊢ ( 𝐾 ∈ OP → ( ( glb ‘ 𝐾 ) ‘ 𝐵 ) ∈ 𝐵 ) |
| 10 | 4 9 | eqeltrd | ⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |