Metamath Proof Explorer


Theorem op0cl

Description: An orthoposet has a zero element. ( h0elch analog.) (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses op0cl.b 𝐵 = ( Base ‘ 𝐾 )
op0cl.z 0 = ( 0. ‘ 𝐾 )
Assertion op0cl ( 𝐾 ∈ OP → 0𝐵 )

Proof

Step Hyp Ref Expression
1 op0cl.b 𝐵 = ( Base ‘ 𝐾 )
2 op0cl.z 0 = ( 0. ‘ 𝐾 )
3 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
4 1 3 2 p0val ( 𝐾 ∈ OP → 0 = ( ( glb ‘ 𝐾 ) ‘ 𝐵 ) )
5 id ( 𝐾 ∈ OP → 𝐾 ∈ OP )
6 eqid ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 )
7 1 6 3 op01dm ( 𝐾 ∈ OP → ( 𝐵 ∈ dom ( lub ‘ 𝐾 ) ∧ 𝐵 ∈ dom ( glb ‘ 𝐾 ) ) )
8 7 simprd ( 𝐾 ∈ OP → 𝐵 ∈ dom ( glb ‘ 𝐾 ) )
9 1 3 5 8 glbcl ( 𝐾 ∈ OP → ( ( glb ‘ 𝐾 ) ‘ 𝐵 ) ∈ 𝐵 )
10 4 9 eqeltrd ( 𝐾 ∈ OP → 0𝐵 )