| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ople1.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							ople1.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							ople1.u | 
							⊢  1   =  ( 1. ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							ople1 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  𝑋  ≤   1  )  | 
						
						
							| 5 | 
							
								4
							 | 
							biantrurd | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  (  1   ≤  𝑋  ↔  ( 𝑋  ≤   1   ∧   1   ≤  𝑋 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							opposet | 
							⊢ ( 𝐾  ∈  OP  →  𝐾  ∈  Poset )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  𝐾  ∈  Poset )  | 
						
						
							| 8 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								1 3
							 | 
							op1cl | 
							⊢ ( 𝐾  ∈  OP  →   1   ∈  𝐵 )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →   1   ∈  𝐵 )  | 
						
						
							| 11 | 
							
								1 2
							 | 
							posasymb | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧   1   ∈  𝐵 )  →  ( ( 𝑋  ≤   1   ∧   1   ≤  𝑋 )  ↔  𝑋  =   1  ) )  | 
						
						
							| 12 | 
							
								7 8 10 11
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑋  ≤   1   ∧   1   ≤  𝑋 )  ↔  𝑋  =   1  ) )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							bitrd | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  (  1   ≤  𝑋  ↔  𝑋  =   1  ) )  |