Metamath Proof Explorer


Theorem op1sta

Description: Extract the first member of an ordered pair. (See op2nda to extract the second member, op1stb for an alternate version, and op1st for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003)

Ref Expression
Hypotheses cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion op1sta dom { ⟨ 𝐴 , 𝐵 ⟩ } = 𝐴

Proof

Step Hyp Ref Expression
1 cnvsn.1 𝐴 ∈ V
2 cnvsn.2 𝐵 ∈ V
3 2 dmsnop dom { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐴 }
4 3 unieqi dom { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐴 }
5 1 unisn { 𝐴 } = 𝐴
6 4 5 eqtri dom { ⟨ 𝐴 , 𝐵 ⟩ } = 𝐴