Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | op1stg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 | ⊢ ( 𝑥 = 𝐴 → 〈 𝑥 , 𝑦 〉 = 〈 𝐴 , 𝑦 〉 ) | |
2 | 1 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( 1st ‘ 〈 𝑥 , 𝑦 〉 ) = ( 1st ‘ 〈 𝐴 , 𝑦 〉 ) ) |
3 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
4 | 2 3 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 1st ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑥 ↔ ( 1st ‘ 〈 𝐴 , 𝑦 〉 ) = 𝐴 ) ) |
5 | opeq2 | ⊢ ( 𝑦 = 𝐵 → 〈 𝐴 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 ) | |
6 | 5 | fveqeq2d | ⊢ ( 𝑦 = 𝐵 → ( ( 1st ‘ 〈 𝐴 , 𝑦 〉 ) = 𝐴 ↔ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) ) |
7 | vex | ⊢ 𝑥 ∈ V | |
8 | vex | ⊢ 𝑦 ∈ V | |
9 | 7 8 | op1st | ⊢ ( 1st ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑥 |
10 | 4 6 9 | vtocl2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |