Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | op2ndg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 | ⊢ ( 𝑥 = 𝐴 → 〈 𝑥 , 𝑦 〉 = 〈 𝐴 , 𝑦 〉 ) | |
2 | 1 | fveqeq2d | ⊢ ( 𝑥 = 𝐴 → ( ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑦 ↔ ( 2nd ‘ 〈 𝐴 , 𝑦 〉 ) = 𝑦 ) ) |
3 | opeq2 | ⊢ ( 𝑦 = 𝐵 → 〈 𝐴 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 ) | |
4 | 3 | fveq2d | ⊢ ( 𝑦 = 𝐵 → ( 2nd ‘ 〈 𝐴 , 𝑦 〉 ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
5 | id | ⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) | |
6 | 4 5 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( 2nd ‘ 〈 𝐴 , 𝑦 〉 ) = 𝑦 ↔ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) ) |
7 | vex | ⊢ 𝑥 ∈ V | |
8 | vex | ⊢ 𝑦 ∈ V | |
9 | 7 8 | op2nd | ⊢ ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑦 |
10 | 2 6 9 | vtocl2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |