Metamath Proof Explorer


Theorem opabbrex

Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by BJ/AV, 20-Jun-2019) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Assertion opabbrex ( ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝜑 ) ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∈ 𝑉 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } ∈ V )

Proof

Step Hyp Ref Expression
1 simpr ( ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝜑 ) ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∈ 𝑉 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∈ 𝑉 )
2 pm3.41 ( ( 𝑥 𝑅 𝑦𝜑 ) → ( ( 𝑥 𝑅 𝑦𝜓 ) → 𝜑 ) )
3 2 2alimi ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝜑 ) → ∀ 𝑥𝑦 ( ( 𝑥 𝑅 𝑦𝜓 ) → 𝜑 ) )
4 3 adantr ( ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝜑 ) ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∈ 𝑉 ) → ∀ 𝑥𝑦 ( ( 𝑥 𝑅 𝑦𝜓 ) → 𝜑 ) )
5 ssopab2 ( ∀ 𝑥𝑦 ( ( 𝑥 𝑅 𝑦𝜓 ) → 𝜑 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
6 4 5 syl ( ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝜑 ) ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∈ 𝑉 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
7 1 6 ssexd ( ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝜑 ) ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∈ 𝑉 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } ∈ V )