Metamath Proof Explorer


Theorem opabex

Description: Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996)

Ref Expression
Hypotheses opabex.1 𝐴 ∈ V
opabex.2 ( 𝑥𝐴 → ∃* 𝑦 𝜑 )
Assertion opabex { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } ∈ V

Proof

Step Hyp Ref Expression
1 opabex.1 𝐴 ∈ V
2 opabex.2 ( 𝑥𝐴 → ∃* 𝑦 𝜑 )
3 funopab ( Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥𝐴𝜑 ) )
4 moanimv ( ∃* 𝑦 ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐴 → ∃* 𝑦 𝜑 ) )
5 2 4 mpbir ∃* 𝑦 ( 𝑥𝐴𝜑 )
6 3 5 mpgbir Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) }
7 dmopabss dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } ⊆ 𝐴
8 1 7 ssexi dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } ∈ V
9 funex ( ( Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } ∧ dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } ∈ V ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } ∈ V )
10 6 8 9 mp2an { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } ∈ V