Metamath Proof Explorer


Theorem opabex2

Description: Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019)

Ref Expression
Hypotheses opabex2.1 ( 𝜑𝐴𝑉 )
opabex2.2 ( 𝜑𝐵𝑊 )
opabex2.3 ( ( 𝜑𝜓 ) → 𝑥𝐴 )
opabex2.4 ( ( 𝜑𝜓 ) → 𝑦𝐵 )
Assertion opabex2 ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ∈ V )

Proof

Step Hyp Ref Expression
1 opabex2.1 ( 𝜑𝐴𝑉 )
2 opabex2.2 ( 𝜑𝐵𝑊 )
3 opabex2.3 ( ( 𝜑𝜓 ) → 𝑥𝐴 )
4 opabex2.4 ( ( 𝜑𝜓 ) → 𝑦𝐵 )
5 1 2 xpexd ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V )
6 3 4 opabssxpd ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ⊆ ( 𝐴 × 𝐵 ) )
7 5 6 ssexd ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ∈ V )