Metamath Proof Explorer


Theorem opabid2ss

Description: One direction of opabid2 which holds without a Rel A requirement. (Contributed by Thierry Arnoux, 18-Feb-2022)

Ref Expression
Assertion opabid2ss { ⟨ 𝑥 , 𝑦 ⟩ ∣ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 } ⊆ 𝐴

Proof

Step Hyp Ref Expression
1 id ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 )
2 1 opabssi { ⟨ 𝑥 , 𝑦 ⟩ ∣ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 } ⊆ 𝐴