Metamath Proof Explorer


Theorem opabidw

Description: The law of concretion. Special case of Theorem 9.5 of Quine p. 61. Version of opabid with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 14-Apr-1995) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion opabidw ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜑 )

Proof

Step Hyp Ref Expression
1 opex 𝑥 , 𝑦 ⟩ ∈ V
2 copsexgw ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜑 ↔ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) )
3 2 bicomd ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ 𝜑 ) )
4 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) }
5 1 3 4 elab2 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜑 )