| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opabiota.1 | ⊢ 𝐹  =  { 〈 𝑥 ,  𝑦 〉  ∣  { 𝑦  ∣  𝜑 }  =  { 𝑦 } } | 
						
							| 2 |  | opabiota.2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 4 | 2 | iotabidv | ⊢ ( 𝑥  =  𝐵  →  ( ℩ 𝑦 𝜑 )  =  ( ℩ 𝑦 𝜓 ) ) | 
						
							| 5 | 3 4 | eqeq12d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐹 ‘ 𝑥 )  =  ( ℩ 𝑦 𝜑 )  ↔  ( 𝐹 ‘ 𝐵 )  =  ( ℩ 𝑦 𝜓 ) ) ) | 
						
							| 6 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 7 | 6 | eldm | ⊢ ( 𝑥  ∈  dom  𝐹  ↔  ∃ 𝑦 𝑥 𝐹 𝑦 ) | 
						
							| 8 |  | nfiota1 | ⊢ Ⅎ 𝑦 ( ℩ 𝑦 𝜑 ) | 
						
							| 9 | 8 | nfeq2 | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 )  =  ( ℩ 𝑦 𝜑 ) | 
						
							| 10 | 1 | opabiotafun | ⊢ Fun  𝐹 | 
						
							| 11 |  | funbrfv | ⊢ ( Fun  𝐹  →  ( 𝑥 𝐹 𝑦  →  ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ( 𝑥 𝐹 𝑦  →  ( 𝐹 ‘ 𝑥 )  =  𝑦 ) | 
						
							| 13 |  | df-br | ⊢ ( 𝑥 𝐹 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝐹 ) | 
						
							| 14 | 1 | eleq2i | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  𝐹  ↔  〈 𝑥 ,  𝑦 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  { 𝑦  ∣  𝜑 }  =  { 𝑦 } } ) | 
						
							| 15 |  | opabidw | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  { 𝑦  ∣  𝜑 }  =  { 𝑦 } }  ↔  { 𝑦  ∣  𝜑 }  =  { 𝑦 } ) | 
						
							| 16 | 13 14 15 | 3bitri | ⊢ ( 𝑥 𝐹 𝑦  ↔  { 𝑦  ∣  𝜑 }  =  { 𝑦 } ) | 
						
							| 17 |  | vsnid | ⊢ 𝑦  ∈  { 𝑦 } | 
						
							| 18 |  | id | ⊢ ( { 𝑦  ∣  𝜑 }  =  { 𝑦 }  →  { 𝑦  ∣  𝜑 }  =  { 𝑦 } ) | 
						
							| 19 | 17 18 | eleqtrrid | ⊢ ( { 𝑦  ∣  𝜑 }  =  { 𝑦 }  →  𝑦  ∈  { 𝑦  ∣  𝜑 } ) | 
						
							| 20 |  | abid | ⊢ ( 𝑦  ∈  { 𝑦  ∣  𝜑 }  ↔  𝜑 ) | 
						
							| 21 | 19 20 | sylib | ⊢ ( { 𝑦  ∣  𝜑 }  =  { 𝑦 }  →  𝜑 ) | 
						
							| 22 | 16 21 | sylbi | ⊢ ( 𝑥 𝐹 𝑦  →  𝜑 ) | 
						
							| 23 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 24 | 6 23 | breldm | ⊢ ( 𝑥 𝐹 𝑦  →  𝑥  ∈  dom  𝐹 ) | 
						
							| 25 | 1 | opabiotadm | ⊢ dom  𝐹  =  { 𝑥  ∣  ∃! 𝑦 𝜑 } | 
						
							| 26 | 25 | eqabri | ⊢ ( 𝑥  ∈  dom  𝐹  ↔  ∃! 𝑦 𝜑 ) | 
						
							| 27 | 24 26 | sylib | ⊢ ( 𝑥 𝐹 𝑦  →  ∃! 𝑦 𝜑 ) | 
						
							| 28 |  | iota1 | ⊢ ( ∃! 𝑦 𝜑  →  ( 𝜑  ↔  ( ℩ 𝑦 𝜑 )  =  𝑦 ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝑥 𝐹 𝑦  →  ( 𝜑  ↔  ( ℩ 𝑦 𝜑 )  =  𝑦 ) ) | 
						
							| 30 | 22 29 | mpbid | ⊢ ( 𝑥 𝐹 𝑦  →  ( ℩ 𝑦 𝜑 )  =  𝑦 ) | 
						
							| 31 | 12 30 | eqtr4d | ⊢ ( 𝑥 𝐹 𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( ℩ 𝑦 𝜑 ) ) | 
						
							| 32 | 9 31 | exlimi | ⊢ ( ∃ 𝑦 𝑥 𝐹 𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( ℩ 𝑦 𝜑 ) ) | 
						
							| 33 | 7 32 | sylbi | ⊢ ( 𝑥  ∈  dom  𝐹  →  ( 𝐹 ‘ 𝑥 )  =  ( ℩ 𝑦 𝜑 ) ) | 
						
							| 34 | 5 33 | vtoclga | ⊢ ( 𝐵  ∈  dom  𝐹  →  ( 𝐹 ‘ 𝐵 )  =  ( ℩ 𝑦 𝜓 ) ) |