Metamath Proof Explorer


Theorem opabiotadm

Description: Define a function whose value is "the unique y such that ph ( x , y ) ". (Contributed by NM, 16-Nov-2013)

Ref Expression
Hypothesis opabiota.1 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑦𝜑 } = { 𝑦 } }
Assertion opabiotadm dom 𝐹 = { 𝑥 ∣ ∃! 𝑦 𝜑 }

Proof

Step Hyp Ref Expression
1 opabiota.1 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑦𝜑 } = { 𝑦 } }
2 dmopab dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑦𝜑 } = { 𝑦 } } = { 𝑥 ∣ ∃ 𝑦 { 𝑦𝜑 } = { 𝑦 } }
3 1 dmeqi dom 𝐹 = dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑦𝜑 } = { 𝑦 } }
4 euabsn ( ∃! 𝑦 𝜑 ↔ ∃ 𝑦 { 𝑦𝜑 } = { 𝑦 } )
5 4 abbii { 𝑥 ∣ ∃! 𝑦 𝜑 } = { 𝑥 ∣ ∃ 𝑦 { 𝑦𝜑 } = { 𝑦 } }
6 2 3 5 3eqtr4i dom 𝐹 = { 𝑥 ∣ ∃! 𝑦 𝜑 }