Metamath Proof Explorer


Theorem opabresex2

Description: Restrictions of a collection of ordered pairs of related elements are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 15-Jan-2021) Add disjoint variable conditions betweem W , G and x , y to remove hypotheses. (Revised by SN, 13-Dec-2024)

Ref Expression
Assertion opabresex2 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝑊𝐺 ) 𝑦𝜃 ) } ∈ V

Proof

Step Hyp Ref Expression
1 fvex ( 𝑊𝐺 ) ∈ V
2 elopabran ( 𝑧 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝑊𝐺 ) 𝑦𝜃 ) } → 𝑧 ∈ ( 𝑊𝐺 ) )
3 2 ssriv { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝑊𝐺 ) 𝑦𝜃 ) } ⊆ ( 𝑊𝐺 )
4 1 3 ssexi { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝑊𝐺 ) 𝑦𝜃 ) } ∈ V