Metamath Proof Explorer


Theorem opabresidOLD

Description: Obsolete version of opabresid as of 26-Dec-2023. (Contributed by FL, 25-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion opabresidOLD { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝑥 ) } = ( I ↾ 𝐴 )

Proof

Step Hyp Ref Expression
1 resopab ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 = 𝑥 } ↾ 𝐴 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝑥 ) }
2 equcom ( 𝑦 = 𝑥𝑥 = 𝑦 )
3 2 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 = 𝑥 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 }
4 df-id I = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 }
5 3 4 eqtr4i { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 = 𝑥 } = I
6 5 reseq1i ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 = 𝑥 } ↾ 𝐴 ) = ( I ↾ 𝐴 )
7 1 6 eqtr3i { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝑥 ) } = ( I ↾ 𝐴 )