Description: Obsolete version of opabresid as of 26-Dec-2023. (Contributed by FL, 25-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | opabresidOLD | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) } = ( I ↾ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 = 𝑥 } ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) } | |
2 | equcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
3 | 2 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 = 𝑥 } = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } |
4 | df-id | ⊢ I = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } | |
5 | 3 4 | eqtr4i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 = 𝑥 } = I |
6 | 5 | reseq1i | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 = 𝑥 } ↾ 𝐴 ) = ( I ↾ 𝐴 ) |
7 | 1 6 | eqtr3i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) } = ( I ↾ 𝐴 ) |