Step |
Hyp |
Ref |
Expression |
1 |
|
dfrn2 |
⊢ ran 𝑅 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝑅 𝑦 } |
2 |
|
nfopab2 |
⊢ Ⅎ 𝑦 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } |
3 |
2
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } |
4 |
|
nfopab1 |
⊢ Ⅎ 𝑥 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } |
5 |
4
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } |
6 |
|
df-br |
⊢ ( 𝑥 𝑅 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 ) |
7 |
|
eleq2 |
⊢ ( 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ) ) |
8 |
|
opabidw |
⊢ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜑 ) |
9 |
7 8
|
bitrdi |
⊢ ( 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 ↔ 𝜑 ) ) |
10 |
6 9
|
bitrid |
⊢ ( 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → ( 𝑥 𝑅 𝑦 ↔ 𝜑 ) ) |
11 |
5 10
|
exbid |
⊢ ( 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → ( ∃ 𝑥 𝑥 𝑅 𝑦 ↔ ∃ 𝑥 𝜑 ) ) |
12 |
3 11
|
abbid |
⊢ ( 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → { 𝑦 ∣ ∃ 𝑥 𝑥 𝑅 𝑦 } = { 𝑦 ∣ ∃ 𝑥 𝜑 } ) |
13 |
1 12
|
eqtrid |
⊢ ( 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → ran 𝑅 = { 𝑦 ∣ ∃ 𝑥 𝜑 } ) |