Step |
Hyp |
Ref |
Expression |
1 |
|
opco1.exa |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
opco1.exb |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
df-ov |
⊢ ( 𝐴 ( 𝐹 ∘ 2nd ) 𝐵 ) = ( ( 𝐹 ∘ 2nd ) ‘ 〈 𝐴 , 𝐵 〉 ) |
4 |
3
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ( 𝐹 ∘ 2nd ) 𝐵 ) = ( ( 𝐹 ∘ 2nd ) ‘ 〈 𝐴 , 𝐵 〉 ) ) |
5 |
|
fo2nd |
⊢ 2nd : V –onto→ V |
6 |
|
fof |
⊢ ( 2nd : V –onto→ V → 2nd : V ⟶ V ) |
7 |
5 6
|
mp1i |
⊢ ( 𝜑 → 2nd : V ⟶ V ) |
8 |
|
opex |
⊢ 〈 𝐴 , 𝐵 〉 ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ V ) |
10 |
7 9
|
fvco3d |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 2nd ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝐹 ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
11 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
12 |
1 2 11
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
14 |
4 10 13
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 ( 𝐹 ∘ 2nd ) 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |