Metamath Proof Explorer


Theorem opcom

Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009)

Ref Expression
Hypotheses opcom.1 𝐴 ∈ V
opcom.2 𝐵 ∈ V
Assertion opcom ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐵 , 𝐴 ⟩ ↔ 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 opcom.1 𝐴 ∈ V
2 opcom.2 𝐵 ∈ V
3 1 2 opth ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐵 , 𝐴 ⟩ ↔ ( 𝐴 = 𝐵𝐵 = 𝐴 ) )
4 eqcom ( 𝐵 = 𝐴𝐴 = 𝐵 )
5 4 anbi2i ( ( 𝐴 = 𝐵𝐵 = 𝐴 ) ↔ ( 𝐴 = 𝐵𝐴 = 𝐵 ) )
6 anidm ( ( 𝐴 = 𝐵𝐴 = 𝐵 ) ↔ 𝐴 = 𝐵 )
7 3 5 6 3bitri ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐵 , 𝐴 ⟩ ↔ 𝐴 = 𝐵 )