Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opcom.1 | ⊢ 𝐴 ∈ V | |
opcom.2 | ⊢ 𝐵 ∈ V | ||
Assertion | opcom | ⊢ ( 〈 𝐴 , 𝐵 〉 = 〈 𝐵 , 𝐴 〉 ↔ 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opcom.1 | ⊢ 𝐴 ∈ V | |
2 | opcom.2 | ⊢ 𝐵 ∈ V | |
3 | 1 2 | opth | ⊢ ( 〈 𝐴 , 𝐵 〉 = 〈 𝐵 , 𝐴 〉 ↔ ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐴 ) ) |
4 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
5 | 4 | anbi2i | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐴 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐴 = 𝐵 ) ) |
6 | anidm | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐴 = 𝐵 ) ↔ 𝐴 = 𝐵 ) | |
7 | 3 5 6 | 3bitri | ⊢ ( 〈 𝐴 , 𝐵 〉 = 〈 𝐵 , 𝐴 〉 ↔ 𝐴 = 𝐵 ) |