Description: Orthocomplement contraposition law. ( negcon1 analog.) (Contributed by NM, 24-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opoccl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
opoccl.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
Assertion | opcon1b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) = 𝑌 ↔ ( ⊥ ‘ 𝑌 ) = 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoccl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | opoccl.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
3 | 1 2 | opcon2b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = ( ⊥ ‘ 𝑌 ) ↔ 𝑌 = ( ⊥ ‘ 𝑋 ) ) ) |
4 | eqcom | ⊢ ( ( ⊥ ‘ 𝑌 ) = 𝑋 ↔ 𝑋 = ( ⊥ ‘ 𝑌 ) ) | |
5 | eqcom | ⊢ ( ( ⊥ ‘ 𝑋 ) = 𝑌 ↔ 𝑌 = ( ⊥ ‘ 𝑋 ) ) | |
6 | 3 4 5 | 3bitr4g | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) = 𝑋 ↔ ( ⊥ ‘ 𝑋 ) = 𝑌 ) ) |
7 | 6 | bicomd | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) = 𝑌 ↔ ( ⊥ ‘ 𝑌 ) = 𝑋 ) ) |