Metamath Proof Explorer


Theorem opcon1b

Description: Orthocomplement contraposition law. ( negcon1 analog.) (Contributed by NM, 24-Jan-2012)

Ref Expression
Hypotheses opoccl.b 𝐵 = ( Base ‘ 𝐾 )
opoccl.o = ( oc ‘ 𝐾 )
Assertion opcon1b ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 ) = 𝑌 ↔ ( 𝑌 ) = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 opoccl.b 𝐵 = ( Base ‘ 𝐾 )
2 opoccl.o = ( oc ‘ 𝐾 )
3 1 2 opcon2b ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 = ( 𝑌 ) ↔ 𝑌 = ( 𝑋 ) ) )
4 eqcom ( ( 𝑌 ) = 𝑋𝑋 = ( 𝑌 ) )
5 eqcom ( ( 𝑋 ) = 𝑌𝑌 = ( 𝑋 ) )
6 3 4 5 3bitr4g ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑌 ) = 𝑋 ↔ ( 𝑋 ) = 𝑌 ) )
7 6 bicomd ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 ) = 𝑌 ↔ ( 𝑌 ) = 𝑋 ) )