| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							opoccl.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							opoccl.o | 
							⊢  ⊥   =  ( oc ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							opoccl | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 4 | 
							
								3
							 | 
							3adant2 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 5 | 
							
								1 2
							 | 
							opcon3b | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  (  ⊥  ‘ 𝑌 )  ∈  𝐵 )  →  ( 𝑋  =  (  ⊥  ‘ 𝑌 )  ↔  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) )  =  (  ⊥  ‘ 𝑋 ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syld3an3 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  =  (  ⊥  ‘ 𝑌 )  ↔  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) )  =  (  ⊥  ‘ 𝑋 ) ) )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							opococ | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) )  =  𝑌 )  | 
						
						
							| 8 | 
							
								7
							 | 
							3adant2 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) )  =  𝑌 )  | 
						
						
							| 9 | 
							
								8
							 | 
							eqeq1d | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) )  =  (  ⊥  ‘ 𝑋 )  ↔  𝑌  =  (  ⊥  ‘ 𝑋 ) ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							bitrd | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  =  (  ⊥  ‘ 𝑌 )  ↔  𝑌  =  (  ⊥  ‘ 𝑋 ) ) )  |