Metamath Proof Explorer


Theorem opcon2b

Description: Orthocomplement contraposition law. ( negcon2 analog.) (Contributed by NM, 16-Jan-2012)

Ref Expression
Hypotheses opoccl.b 𝐵 = ( Base ‘ 𝐾 )
opoccl.o = ( oc ‘ 𝐾 )
Assertion opcon2b ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 = ( 𝑌 ) ↔ 𝑌 = ( 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 opoccl.b 𝐵 = ( Base ‘ 𝐾 )
2 opoccl.o = ( oc ‘ 𝐾 )
3 1 2 opoccl ( ( 𝐾 ∈ OP ∧ 𝑌𝐵 ) → ( 𝑌 ) ∈ 𝐵 )
4 3 3adant2 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑌 ) ∈ 𝐵 )
5 1 2 opcon3b ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ∧ ( 𝑌 ) ∈ 𝐵 ) → ( 𝑋 = ( 𝑌 ) ↔ ( ‘ ( 𝑌 ) ) = ( 𝑋 ) ) )
6 4 5 syld3an3 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 = ( 𝑌 ) ↔ ( ‘ ( 𝑌 ) ) = ( 𝑋 ) ) )
7 1 2 opococ ( ( 𝐾 ∈ OP ∧ 𝑌𝐵 ) → ( ‘ ( 𝑌 ) ) = 𝑌 )
8 7 3adant2 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( ‘ ( 𝑌 ) ) = 𝑌 )
9 8 eqeq1d ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( ( ‘ ( 𝑌 ) ) = ( 𝑋 ) ↔ 𝑌 = ( 𝑋 ) ) )
10 6 9 bitrd ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 = ( 𝑌 ) ↔ 𝑌 = ( 𝑋 ) ) )