Metamath Proof Explorer


Theorem opelcnv

Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995)

Ref Expression
Hypotheses opelcnv.1 𝐴 ∈ V
opelcnv.2 𝐵 ∈ V
Assertion opelcnv ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ⟨ 𝐵 , 𝐴 ⟩ ∈ 𝑅 )

Proof

Step Hyp Ref Expression
1 opelcnv.1 𝐴 ∈ V
2 opelcnv.2 𝐵 ∈ V
3 opelcnvg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ⟨ 𝐵 , 𝐴 ⟩ ∈ 𝑅 ) )
4 1 2 3 mp2an ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ⟨ 𝐵 , 𝐴 ⟩ ∈ 𝑅 )