Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opelcnv.1 | ⊢ 𝐴 ∈ V | |
| opelcnv.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | opelcnv | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ◡ 𝑅 ↔ 〈 𝐵 , 𝐴 〉 ∈ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 | ⊢ 𝐴 ∈ V | |
| 2 | opelcnv.2 | ⊢ 𝐵 ∈ V | |
| 3 | opelcnvg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ ◡ 𝑅 ↔ 〈 𝐵 , 𝐴 〉 ∈ 𝑅 ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ◡ 𝑅 ↔ 〈 𝐵 , 𝐴 〉 ∈ 𝑅 ) |