Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelcnv.1 | ⊢ 𝐴 ∈ V | |
opelcnv.2 | ⊢ 𝐵 ∈ V | ||
Assertion | opelcnv | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ◡ 𝑅 ↔ 〈 𝐵 , 𝐴 〉 ∈ 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnv.1 | ⊢ 𝐴 ∈ V | |
2 | opelcnv.2 | ⊢ 𝐵 ∈ V | |
3 | opelcnvg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ ◡ 𝑅 ↔ 〈 𝐵 , 𝐴 〉 ∈ 𝑅 ) ) | |
4 | 1 2 3 | mp2an | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ◡ 𝑅 ↔ 〈 𝐵 , 𝐴 〉 ∈ 𝑅 ) |