Metamath Proof Explorer


Theorem opelco

Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996) (Revised by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses opelco.1 𝐴 ∈ V
opelco.2 𝐵 ∈ V
Assertion opelco ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶𝐷 ) ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥𝑥 𝐶 𝐵 ) )

Proof

Step Hyp Ref Expression
1 opelco.1 𝐴 ∈ V
2 opelco.2 𝐵 ∈ V
3 df-br ( 𝐴 ( 𝐶𝐷 ) 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶𝐷 ) )
4 1 2 brco ( 𝐴 ( 𝐶𝐷 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥𝑥 𝐶 𝐵 ) )
5 3 4 bitr3i ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶𝐷 ) ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥𝑥 𝐶 𝐵 ) )