Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996) (Revised by Mario Carneiro, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelco.1 | ⊢ 𝐴 ∈ V | |
opelco.2 | ⊢ 𝐵 ∈ V | ||
Assertion | opelco | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 ∘ 𝐷 ) ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelco.1 | ⊢ 𝐴 ∈ V | |
2 | opelco.2 | ⊢ 𝐵 ∈ V | |
3 | df-br | ⊢ ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 ∘ 𝐷 ) ) | |
4 | 1 2 | brco | ⊢ ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) |
5 | 3 4 | bitr3i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 ∘ 𝐷 ) ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) |