Metamath Proof Explorer


Theorem opelco2g

Description: Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997) (Revised by Mario Carneiro, 24-Feb-2015)

Ref Expression
Assertion opelco2g ( ( 𝐴𝑉𝐵𝑊 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶𝐷 ) ↔ ∃ 𝑥 ( ⟨ 𝐴 , 𝑥 ⟩ ∈ 𝐷 ∧ ⟨ 𝑥 , 𝐵 ⟩ ∈ 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 brcog ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( 𝐶𝐷 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥𝑥 𝐶 𝐵 ) ) )
2 df-br ( 𝐴 ( 𝐶𝐷 ) 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶𝐷 ) )
3 df-br ( 𝐴 𝐷 𝑥 ↔ ⟨ 𝐴 , 𝑥 ⟩ ∈ 𝐷 )
4 df-br ( 𝑥 𝐶 𝐵 ↔ ⟨ 𝑥 , 𝐵 ⟩ ∈ 𝐶 )
5 3 4 anbi12i ( ( 𝐴 𝐷 𝑥𝑥 𝐶 𝐵 ) ↔ ( ⟨ 𝐴 , 𝑥 ⟩ ∈ 𝐷 ∧ ⟨ 𝑥 , 𝐵 ⟩ ∈ 𝐶 ) )
6 5 exbii ( ∃ 𝑥 ( 𝐴 𝐷 𝑥𝑥 𝐶 𝐵 ) ↔ ∃ 𝑥 ( ⟨ 𝐴 , 𝑥 ⟩ ∈ 𝐷 ∧ ⟨ 𝑥 , 𝐵 ⟩ ∈ 𝐶 ) )
7 1 2 6 3bitr3g ( ( 𝐴𝑉𝐵𝑊 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶𝐷 ) ↔ ∃ 𝑥 ( ⟨ 𝐴 , 𝑥 ⟩ ∈ 𝐷 ∧ ⟨ 𝑥 , 𝐵 ⟩ ∈ 𝐶 ) ) )