Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opeldm.1 | ⊢ 𝐴 ∈ V | |
opeldm.2 | ⊢ 𝐵 ∈ V | ||
Assertion | opeldm | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeldm.1 | ⊢ 𝐴 ∈ V | |
2 | opeldm.2 | ⊢ 𝐵 ∈ V | |
3 | opeq2 | ⊢ ( 𝑦 = 𝐵 → 〈 𝐴 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 ) | |
4 | 3 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( 〈 𝐴 , 𝑦 〉 ∈ 𝐶 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐶 ) ) |
5 | 2 4 | spcev | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ 𝐶 → ∃ 𝑦 〈 𝐴 , 𝑦 〉 ∈ 𝐶 ) |
6 | 1 | eldm2 | ⊢ ( 𝐴 ∈ dom 𝐶 ↔ ∃ 𝑦 〈 𝐴 , 𝑦 〉 ∈ 𝐶 ) |
7 | 5 6 | sylibr | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶 ) |