Metamath Proof Explorer


Theorem opeldm

Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995)

Ref Expression
Hypotheses opeldm.1 𝐴 ∈ V
opeldm.2 𝐵 ∈ V
Assertion opeldm ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶𝐴 ∈ dom 𝐶 )

Proof

Step Hyp Ref Expression
1 opeldm.1 𝐴 ∈ V
2 opeldm.2 𝐵 ∈ V
3 opeq2 ( 𝑦 = 𝐵 → ⟨ 𝐴 , 𝑦 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
4 3 eleq1d ( 𝑦 = 𝐵 → ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐶 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 ) )
5 2 4 spcev ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 → ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐶 )
6 1 eldm2 ( 𝐴 ∈ dom 𝐶 ↔ ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐶 )
7 5 6 sylibr ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶𝐴 ∈ dom 𝐶 )