Metamath Proof Explorer


Theorem opeldmd

Description: Membership of first of an ordered pair in a domain. Deduction version of opeldm . (Contributed by AV, 11-Mar-2021)

Ref Expression
Hypotheses opeldmd.1 ( 𝜑𝐴𝑉 )
opeldmd.2 ( 𝜑𝐵𝑊 )
Assertion opeldmd ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶𝐴 ∈ dom 𝐶 ) )

Proof

Step Hyp Ref Expression
1 opeldmd.1 ( 𝜑𝐴𝑉 )
2 opeldmd.2 ( 𝜑𝐵𝑊 )
3 opeq2 ( 𝑦 = 𝐵 → ⟨ 𝐴 , 𝑦 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
4 3 eleq1d ( 𝑦 = 𝐵 → ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐶 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 ) )
5 4 spcegv ( 𝐵𝑊 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 → ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐶 ) )
6 2 5 syl ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 → ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐶 ) )
7 eldm2g ( 𝐴𝑉 → ( 𝐴 ∈ dom 𝐶 ↔ ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐶 ) )
8 1 7 syl ( 𝜑 → ( 𝐴 ∈ dom 𝐶 ↔ ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐶 ) )
9 6 8 sylibrd ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶𝐴 ∈ dom 𝐶 ) )