Description: Membership of first of an ordered pair in a domain. Deduction version of opeldm . (Contributed by AV, 11-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opeldmd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| opeldmd.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| Assertion | opeldmd | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeldmd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | opeldmd.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | opeq2 | ⊢ ( 𝑦 = 𝐵 → 〈 𝐴 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( 〈 𝐴 , 𝑦 〉 ∈ 𝐶 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐶 ) ) |
| 5 | 4 | spcegv | ⊢ ( 𝐵 ∈ 𝑊 → ( 〈 𝐴 , 𝐵 〉 ∈ 𝐶 → ∃ 𝑦 〈 𝐴 , 𝑦 〉 ∈ 𝐶 ) ) |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ 𝐶 → ∃ 𝑦 〈 𝐴 , 𝑦 〉 ∈ 𝐶 ) ) |
| 7 | eldm2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ dom 𝐶 ↔ ∃ 𝑦 〈 𝐴 , 𝑦 〉 ∈ 𝐶 ) ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ dom 𝐶 ↔ ∃ 𝑦 〈 𝐴 , 𝑦 〉 ∈ 𝐶 ) ) |
| 9 | 6 8 | sylibrd | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶 ) ) |