Metamath Proof Explorer


Theorem opelf

Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opelf ( ( 𝐹 : 𝐴𝐵 ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ 𝐹 ) → ( 𝐶𝐴𝐷𝐵 ) )

Proof

Step Hyp Ref Expression
1 fssxp ( 𝐹 : 𝐴𝐵𝐹 ⊆ ( 𝐴 × 𝐵 ) )
2 1 sseld ( 𝐹 : 𝐴𝐵 → ( ⟨ 𝐶 , 𝐷 ⟩ ∈ 𝐹 → ⟨ 𝐶 , 𝐷 ⟩ ∈ ( 𝐴 × 𝐵 ) ) )
3 opelxp ( ⟨ 𝐶 , 𝐷 ⟩ ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝐶𝐴𝐷𝐵 ) )
4 2 3 syl6ib ( 𝐹 : 𝐴𝐵 → ( ⟨ 𝐶 , 𝐷 ⟩ ∈ 𝐹 → ( 𝐶𝐴𝐷𝐵 ) ) )
5 4 imp ( ( 𝐹 : 𝐴𝐵 ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ 𝐹 ) → ( 𝐶𝐴𝐷𝐵 ) )