Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opelf | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 〈 𝐶 , 𝐷 〉 ∈ 𝐹 ) → ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssxp | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) | |
| 2 | 1 | sseld | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 〈 𝐶 , 𝐷 〉 ∈ 𝐹 → 〈 𝐶 , 𝐷 〉 ∈ ( 𝐴 × 𝐵 ) ) ) |
| 3 | opelxp | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) | |
| 4 | 2 3 | imbitrdi | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 〈 𝐶 , 𝐷 〉 ∈ 𝐹 → ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) ) |
| 5 | 4 | imp | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 〈 𝐶 , 𝐷 〉 ∈ 𝐹 ) → ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) |