Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | opelf | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 〈 𝐶 , 𝐷 〉 ∈ 𝐹 ) → ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) | |
2 | 1 | sseld | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 〈 𝐶 , 𝐷 〉 ∈ 𝐹 → 〈 𝐶 , 𝐷 〉 ∈ ( 𝐴 × 𝐵 ) ) ) |
3 | opelxp | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) | |
4 | 2 3 | syl6ib | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 〈 𝐶 , 𝐷 〉 ∈ 𝐹 → ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) ) |
5 | 4 | imp | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 〈 𝐶 , 𝐷 〉 ∈ 𝐹 ) → ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) |