Metamath Proof Explorer


Theorem opelinxp

Description: Ordered pair element in an intersection with Cartesian product. (Contributed by Peter Mazsa, 21-Jul-2019)

Ref Expression
Assertion opelinxp ( ⟨ 𝐶 , 𝐷 ⟩ ∈ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ↔ ( ( 𝐶𝐴𝐷𝐵 ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 brinxp2 ( 𝐶 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝐷 ↔ ( ( 𝐶𝐴𝐷𝐵 ) ∧ 𝐶 𝑅 𝐷 ) )
2 df-br ( 𝐶 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝐷 ↔ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) )
3 df-br ( 𝐶 𝑅 𝐷 ↔ ⟨ 𝐶 , 𝐷 ⟩ ∈ 𝑅 )
4 3 anbi2i ( ( ( 𝐶𝐴𝐷𝐵 ) ∧ 𝐶 𝑅 𝐷 ) ↔ ( ( 𝐶𝐴𝐷𝐵 ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ 𝑅 ) )
5 1 2 4 3bitr3i ( ⟨ 𝐶 , 𝐷 ⟩ ∈ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ↔ ( ( 𝐶𝐴𝐷𝐵 ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ 𝑅 ) )