| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-iun | ⊢ ∪  𝑦  ∈  𝐵 ( 𝐴  ×  { 𝑦 } )  =  { 𝑥  ∣  ∃ 𝑦  ∈  𝐵 𝑥  ∈  ( 𝐴  ×  { 𝑦 } ) } | 
						
							| 2 | 1 | eleq2i | ⊢ ( 〈 𝐶 ,  𝑦 〉  ∈  ∪  𝑦  ∈  𝐵 ( 𝐴  ×  { 𝑦 } )  ↔  〈 𝐶 ,  𝑦 〉  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  𝐵 𝑥  ∈  ( 𝐴  ×  { 𝑦 } ) } ) | 
						
							| 3 |  | opex | ⊢ 〈 𝐶 ,  𝑦 〉  ∈  V | 
						
							| 4 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝐵 𝑥  ∈  ( 𝐴  ×  { 𝑦 } )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ×  { 𝑦 } ) ) ) | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ×  { 𝑦 } ) ) | 
						
							| 6 |  | nfs1v | ⊢ Ⅎ 𝑦 [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵 | 
						
							| 7 |  | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑧  /  𝑦 ⦌ 𝐴 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑦 { 𝑧 } | 
						
							| 9 | 7 8 | nfxp | ⊢ Ⅎ 𝑦 ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) | 
						
							| 10 | 9 | nfcri | ⊢ Ⅎ 𝑦 𝑥  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) | 
						
							| 11 | 6 10 | nfan | ⊢ Ⅎ 𝑦 ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) ) | 
						
							| 12 |  | sbequ12 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦  ∈  𝐵  ↔  [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵 ) ) | 
						
							| 13 |  | csbeq1a | ⊢ ( 𝑦  =  𝑧  →  𝐴  =  ⦋ 𝑧  /  𝑦 ⦌ 𝐴 ) | 
						
							| 14 |  | sneq | ⊢ ( 𝑦  =  𝑧  →  { 𝑦 }  =  { 𝑧 } ) | 
						
							| 15 | 13 14 | xpeq12d | ⊢ ( 𝑦  =  𝑧  →  ( 𝐴  ×  { 𝑦 } )  =  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) ) | 
						
							| 16 | 15 | eleq2d | ⊢ ( 𝑦  =  𝑧  →  ( 𝑥  ∈  ( 𝐴  ×  { 𝑦 } )  ↔  𝑥  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) ) ) | 
						
							| 17 | 12 16 | anbi12d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ×  { 𝑦 } ) )  ↔  ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) ) ) ) | 
						
							| 18 | 5 11 17 | cbvexv1 | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ×  { 𝑦 } ) )  ↔  ∃ 𝑧 ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) ) ) | 
						
							| 19 | 4 18 | bitri | ⊢ ( ∃ 𝑦  ∈  𝐵 𝑥  ∈  ( 𝐴  ×  { 𝑦 } )  ↔  ∃ 𝑧 ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) ) ) | 
						
							| 20 |  | eleq1 | ⊢ ( 𝑥  =  〈 𝐶 ,  𝑦 〉  →  ( 𝑥  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } )  ↔  〈 𝐶 ,  𝑦 〉  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) ) ) | 
						
							| 21 | 20 | anbi2d | ⊢ ( 𝑥  =  〈 𝐶 ,  𝑦 〉  →  ( ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) )  ↔  ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  〈 𝐶 ,  𝑦 〉  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) ) ) ) | 
						
							| 22 | 21 | exbidv | ⊢ ( 𝑥  =  〈 𝐶 ,  𝑦 〉  →  ( ∃ 𝑧 ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) )  ↔  ∃ 𝑧 ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  〈 𝐶 ,  𝑦 〉  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) ) ) ) | 
						
							| 23 | 19 22 | bitrid | ⊢ ( 𝑥  =  〈 𝐶 ,  𝑦 〉  →  ( ∃ 𝑦  ∈  𝐵 𝑥  ∈  ( 𝐴  ×  { 𝑦 } )  ↔  ∃ 𝑧 ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  〈 𝐶 ,  𝑦 〉  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) ) ) ) | 
						
							| 24 | 3 23 | elab | ⊢ ( 〈 𝐶 ,  𝑦 〉  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  𝐵 𝑥  ∈  ( 𝐴  ×  { 𝑦 } ) }  ↔  ∃ 𝑧 ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  〈 𝐶 ,  𝑦 〉  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) ) ) | 
						
							| 25 |  | opelxp | ⊢ ( 〈 𝐶 ,  𝑦 〉  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } )  ↔  ( 𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ∧  𝑦  ∈  { 𝑧 } ) ) | 
						
							| 26 | 25 | anbi2i | ⊢ ( ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  〈 𝐶 ,  𝑦 〉  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) )  ↔  ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  ( 𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ∧  𝑦  ∈  { 𝑧 } ) ) ) | 
						
							| 27 |  | an13 | ⊢ ( ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  ( 𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ∧  𝑦  ∈  { 𝑧 } ) )  ↔  ( 𝑦  ∈  { 𝑧 }  ∧  ( 𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ∧  [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵 ) ) ) | 
						
							| 28 |  | ancom | ⊢ ( ( 𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ∧  [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵 )  ↔  ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴 ) ) | 
						
							| 29 | 28 | anbi2i | ⊢ ( ( 𝑦  ∈  { 𝑧 }  ∧  ( 𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ∧  [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵 ) )  ↔  ( 𝑦  ∈  { 𝑧 }  ∧  ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴 ) ) ) | 
						
							| 30 | 27 29 | bitri | ⊢ ( ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  ( 𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ∧  𝑦  ∈  { 𝑧 } ) )  ↔  ( 𝑦  ∈  { 𝑧 }  ∧  ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴 ) ) ) | 
						
							| 31 |  | velsn | ⊢ ( 𝑦  ∈  { 𝑧 }  ↔  𝑦  =  𝑧 ) | 
						
							| 32 |  | equcom | ⊢ ( 𝑦  =  𝑧  ↔  𝑧  =  𝑦 ) | 
						
							| 33 | 31 32 | bitri | ⊢ ( 𝑦  ∈  { 𝑧 }  ↔  𝑧  =  𝑦 ) | 
						
							| 34 | 33 | anbi1i | ⊢ ( ( 𝑦  ∈  { 𝑧 }  ∧  ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴 ) )  ↔  ( 𝑧  =  𝑦  ∧  ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴 ) ) ) | 
						
							| 35 | 26 30 34 | 3bitri | ⊢ ( ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  〈 𝐶 ,  𝑦 〉  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) )  ↔  ( 𝑧  =  𝑦  ∧  ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴 ) ) ) | 
						
							| 36 | 35 | exbii | ⊢ ( ∃ 𝑧 ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  〈 𝐶 ,  𝑦 〉  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) )  ↔  ∃ 𝑧 ( 𝑧  =  𝑦  ∧  ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴 ) ) ) | 
						
							| 37 |  | sbequ12r | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 38 | 13 | equcoms | ⊢ ( 𝑧  =  𝑦  →  𝐴  =  ⦋ 𝑧  /  𝑦 ⦌ 𝐴 ) | 
						
							| 39 | 38 | eqcomd | ⊢ ( 𝑧  =  𝑦  →  ⦋ 𝑧  /  𝑦 ⦌ 𝐴  =  𝐴 ) | 
						
							| 40 | 39 | eleq2d | ⊢ ( 𝑧  =  𝑦  →  ( 𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ↔  𝐶  ∈  𝐴 ) ) | 
						
							| 41 | 37 40 | anbi12d | ⊢ ( 𝑧  =  𝑦  →  ( ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴 )  ↔  ( 𝑦  ∈  𝐵  ∧  𝐶  ∈  𝐴 ) ) ) | 
						
							| 42 | 41 | equsexvw | ⊢ ( ∃ 𝑧 ( 𝑧  =  𝑦  ∧  ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  𝐶  ∈  ⦋ 𝑧  /  𝑦 ⦌ 𝐴 ) )  ↔  ( 𝑦  ∈  𝐵  ∧  𝐶  ∈  𝐴 ) ) | 
						
							| 43 | 36 42 | bitri | ⊢ ( ∃ 𝑧 ( [ 𝑧  /  𝑦 ] 𝑦  ∈  𝐵  ∧  〈 𝐶 ,  𝑦 〉  ∈  ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  ×  { 𝑧 } ) )  ↔  ( 𝑦  ∈  𝐵  ∧  𝐶  ∈  𝐴 ) ) | 
						
							| 44 | 2 24 43 | 3bitri | ⊢ ( 〈 𝐶 ,  𝑦 〉  ∈  ∪  𝑦  ∈  𝐵 ( 𝐴  ×  { 𝑦 } )  ↔  ( 𝑦  ∈  𝐵  ∧  𝐶  ∈  𝐴 ) ) |