Metamath Proof Explorer


Theorem opeliunxp

Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion opeliunxp ( ⟨ 𝑥 , 𝐶 ⟩ ∈ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝑥𝐴𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-iun 𝑥𝐴 ( { 𝑥 } × 𝐵 ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) }
2 1 eleq2i ( ⟨ 𝑥 , 𝐶 ⟩ ∈ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ↔ ⟨ 𝑥 , 𝐶 ⟩ ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) } )
3 opex 𝑥 , 𝐶 ⟩ ∈ V
4 df-rex ( ∃ 𝑥𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) )
5 nfv 𝑧 ( 𝑥𝐴𝑦 ∈ ( { 𝑥 } × 𝐵 ) )
6 nfs1v 𝑥 [ 𝑧 / 𝑥 ] 𝑥𝐴
7 nfcv 𝑥 { 𝑧 }
8 nfcsb1v 𝑥 𝑧 / 𝑥 𝐵
9 7 8 nfxp 𝑥 ( { 𝑧 } × 𝑧 / 𝑥 𝐵 )
10 9 nfcri 𝑥 𝑦 ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 )
11 6 10 nfan 𝑥 ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝑦 ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) )
12 sbequ12 ( 𝑥 = 𝑧 → ( 𝑥𝐴 ↔ [ 𝑧 / 𝑥 ] 𝑥𝐴 ) )
13 sneq ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } )
14 csbeq1a ( 𝑥 = 𝑧𝐵 = 𝑧 / 𝑥 𝐵 )
15 13 14 xpeq12d ( 𝑥 = 𝑧 → ( { 𝑥 } × 𝐵 ) = ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) )
16 15 eleq2d ( 𝑥 = 𝑧 → ( 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ↔ 𝑦 ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) )
17 12 16 anbi12d ( 𝑥 = 𝑧 → ( ( 𝑥𝐴𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ↔ ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝑦 ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) ) )
18 5 11 17 cbvexv1 ( ∃ 𝑥 ( 𝑥𝐴𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝑦 ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) )
19 4 18 bitri ( ∃ 𝑥𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝑦 ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) )
20 eleq1 ( 𝑦 = ⟨ 𝑥 , 𝐶 ⟩ → ( 𝑦 ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ↔ ⟨ 𝑥 , 𝐶 ⟩ ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) )
21 20 anbi2d ( 𝑦 = ⟨ 𝑥 , 𝐶 ⟩ → ( ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝑦 ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) ↔ ( [ 𝑧 / 𝑥 ] 𝑥𝐴 ∧ ⟨ 𝑥 , 𝐶 ⟩ ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) ) )
22 21 exbidv ( 𝑦 = ⟨ 𝑥 , 𝐶 ⟩ → ( ∃ 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝑦 ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥𝐴 ∧ ⟨ 𝑥 , 𝐶 ⟩ ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) ) )
23 19 22 syl5bb ( 𝑦 = ⟨ 𝑥 , 𝐶 ⟩ → ( ∃ 𝑥𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ↔ ∃ 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥𝐴 ∧ ⟨ 𝑥 , 𝐶 ⟩ ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) ) )
24 3 23 elab ( ⟨ 𝑥 , 𝐶 ⟩ ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) } ↔ ∃ 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥𝐴 ∧ ⟨ 𝑥 , 𝐶 ⟩ ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) )
25 opelxp ( ⟨ 𝑥 , 𝐶 ⟩ ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ↔ ( 𝑥 ∈ { 𝑧 } ∧ 𝐶 𝑧 / 𝑥 𝐵 ) )
26 25 anbi2i ( ( [ 𝑧 / 𝑥 ] 𝑥𝐴 ∧ ⟨ 𝑥 , 𝐶 ⟩ ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) ↔ ( [ 𝑧 / 𝑥 ] 𝑥𝐴 ∧ ( 𝑥 ∈ { 𝑧 } ∧ 𝐶 𝑧 / 𝑥 𝐵 ) ) )
27 an12 ( ( [ 𝑧 / 𝑥 ] 𝑥𝐴 ∧ ( 𝑥 ∈ { 𝑧 } ∧ 𝐶 𝑧 / 𝑥 𝐵 ) ) ↔ ( 𝑥 ∈ { 𝑧 } ∧ ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝐶 𝑧 / 𝑥 𝐵 ) ) )
28 velsn ( 𝑥 ∈ { 𝑧 } ↔ 𝑥 = 𝑧 )
29 equcom ( 𝑥 = 𝑧𝑧 = 𝑥 )
30 28 29 bitri ( 𝑥 ∈ { 𝑧 } ↔ 𝑧 = 𝑥 )
31 30 anbi1i ( ( 𝑥 ∈ { 𝑧 } ∧ ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝐶 𝑧 / 𝑥 𝐵 ) ) ↔ ( 𝑧 = 𝑥 ∧ ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝐶 𝑧 / 𝑥 𝐵 ) ) )
32 26 27 31 3bitri ( ( [ 𝑧 / 𝑥 ] 𝑥𝐴 ∧ ⟨ 𝑥 , 𝐶 ⟩ ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) ↔ ( 𝑧 = 𝑥 ∧ ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝐶 𝑧 / 𝑥 𝐵 ) ) )
33 32 exbii ( ∃ 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥𝐴 ∧ ⟨ 𝑥 , 𝐶 ⟩ ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) ↔ ∃ 𝑧 ( 𝑧 = 𝑥 ∧ ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝐶 𝑧 / 𝑥 𝐵 ) ) )
34 sbequ12r ( 𝑧 = 𝑥 → ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝑥𝐴 ) )
35 14 equcoms ( 𝑧 = 𝑥𝐵 = 𝑧 / 𝑥 𝐵 )
36 35 eqcomd ( 𝑧 = 𝑥 𝑧 / 𝑥 𝐵 = 𝐵 )
37 36 eleq2d ( 𝑧 = 𝑥 → ( 𝐶 𝑧 / 𝑥 𝐵𝐶𝐵 ) )
38 34 37 anbi12d ( 𝑧 = 𝑥 → ( ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝐶 𝑧 / 𝑥 𝐵 ) ↔ ( 𝑥𝐴𝐶𝐵 ) ) )
39 38 equsexvw ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ ( [ 𝑧 / 𝑥 ] 𝑥𝐴𝐶 𝑧 / 𝑥 𝐵 ) ) ↔ ( 𝑥𝐴𝐶𝐵 ) )
40 33 39 bitri ( ∃ 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥𝐴 ∧ ⟨ 𝑥 , 𝐶 ⟩ ∈ ( { 𝑧 } × 𝑧 / 𝑥 𝐵 ) ) ↔ ( 𝑥𝐴𝐶𝐵 ) )
41 2 24 40 3bitri ( ⟨ 𝑥 , 𝐶 ⟩ ∈ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝑥𝐴𝐶𝐵 ) )