Step |
Hyp |
Ref |
Expression |
1 |
|
opeliunxp2.1 |
⊢ ( 𝑥 = 𝐶 → 𝐵 = 𝐸 ) |
2 |
|
df-br |
⊢ ( 𝐶 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) 𝐷 ↔ 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
3 |
|
relxp |
⊢ Rel ( { 𝑥 } × 𝐵 ) |
4 |
3
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 Rel ( { 𝑥 } × 𝐵 ) |
5 |
|
reliun |
⊢ ( Rel ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 Rel ( { 𝑥 } × 𝐵 ) ) |
6 |
4 5
|
mpbir |
⊢ Rel ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
7 |
6
|
brrelex1i |
⊢ ( 𝐶 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) 𝐷 → 𝐶 ∈ V ) |
8 |
2 7
|
sylbir |
⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) → 𝐶 ∈ V ) |
9 |
|
elex |
⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ V ) |
10 |
9
|
adantr |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) → 𝐶 ∈ V ) |
11 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
12 |
11
|
nfel2 |
⊢ Ⅎ 𝑥 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
13 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) |
14 |
12 13
|
nfbi |
⊢ Ⅎ 𝑥 ( 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) ) |
15 |
|
opeq1 |
⊢ ( 𝑥 = 𝐶 → 〈 𝑥 , 𝐷 〉 = 〈 𝐶 , 𝐷 〉 ) |
16 |
15
|
eleq1d |
⊢ ( 𝑥 = 𝐶 → ( 〈 𝑥 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) |
17 |
|
eleq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
18 |
1
|
eleq2d |
⊢ ( 𝑥 = 𝐶 → ( 𝐷 ∈ 𝐵 ↔ 𝐷 ∈ 𝐸 ) ) |
19 |
17 18
|
anbi12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) ) ) |
20 |
16 19
|
bibi12d |
⊢ ( 𝑥 = 𝐶 → ( ( 〈 𝑥 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) ↔ ( 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) ) ) ) |
21 |
|
opeliunxp |
⊢ ( 〈 𝑥 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) |
22 |
14 20 21
|
vtoclg1f |
⊢ ( 𝐶 ∈ V → ( 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) ) ) |
23 |
8 10 22
|
pm5.21nii |
⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) ) |