Metamath Proof Explorer


Theorem opelopab2a

Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypothesis opelopabga.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
Assertion opelopab2a ( ( 𝐴𝐶𝐵𝐷 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝜑 ) } ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 opelopabga.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
2 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐶𝐴𝐶 ) )
3 eleq1 ( 𝑦 = 𝐵 → ( 𝑦𝐷𝐵𝐷 ) )
4 2 3 bi2anan9 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( 𝑥𝐶𝑦𝐷 ) ↔ ( 𝐴𝐶𝐵𝐷 ) ) )
5 4 1 anbi12d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝜑 ) ↔ ( ( 𝐴𝐶𝐵𝐷 ) ∧ 𝜓 ) ) )
6 5 opelopabga ( ( 𝐴𝐶𝐵𝐷 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝜑 ) } ↔ ( ( 𝐴𝐶𝐵𝐷 ) ∧ 𝜓 ) ) )
7 6 bianabs ( ( 𝐴𝐶𝐵𝐷 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝜑 ) } ↔ 𝜓 ) )