Step |
Hyp |
Ref |
Expression |
1 |
|
opelopabga.1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) |
3 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷 ) ) |
4 |
2 3
|
bi2anan9 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) ) |
5 |
4 1
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝜓 ) ) ) |
6 |
5
|
opelopabga |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) } ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝜓 ) ) ) |
7 |
6
|
bianabs |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) } ↔ 𝜓 ) ) |