Description: Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opelreal | ⊢ ( 〈 𝐴 , 0R 〉 ∈ ℝ ↔ 𝐴 ∈ R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ 0R = 0R | |
| 2 | df-r | ⊢ ℝ = ( R × { 0R } ) | |
| 3 | 2 | eleq2i | ⊢ ( 〈 𝐴 , 0R 〉 ∈ ℝ ↔ 〈 𝐴 , 0R 〉 ∈ ( R × { 0R } ) ) |
| 4 | opelxp | ⊢ ( 〈 𝐴 , 0R 〉 ∈ ( R × { 0R } ) ↔ ( 𝐴 ∈ R ∧ 0R ∈ { 0R } ) ) | |
| 5 | 0r | ⊢ 0R ∈ R | |
| 6 | 5 | elexi | ⊢ 0R ∈ V |
| 7 | 6 | elsn | ⊢ ( 0R ∈ { 0R } ↔ 0R = 0R ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝐴 ∈ R ∧ 0R ∈ { 0R } ) ↔ ( 𝐴 ∈ R ∧ 0R = 0R ) ) |
| 9 | 3 4 8 | 3bitri | ⊢ ( 〈 𝐴 , 0R 〉 ∈ ℝ ↔ ( 𝐴 ∈ R ∧ 0R = 0R ) ) |
| 10 | 1 9 | mpbiran2 | ⊢ ( 〈 𝐴 , 0R 〉 ∈ ℝ ↔ 𝐴 ∈ R ) |