Metamath Proof Explorer


Theorem opelreal

Description: Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion opelreal ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ↔ 𝐴R )

Proof

Step Hyp Ref Expression
1 eqid 0R = 0R
2 df-r ℝ = ( R × { 0R } )
3 2 eleq2i ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ↔ ⟨ 𝐴 , 0R ⟩ ∈ ( R × { 0R } ) )
4 opelxp ( ⟨ 𝐴 , 0R ⟩ ∈ ( R × { 0R } ) ↔ ( 𝐴R ∧ 0R ∈ { 0R } ) )
5 0r 0RR
6 5 elexi 0R ∈ V
7 6 elsn ( 0R ∈ { 0R } ↔ 0R = 0R )
8 7 anbi2i ( ( 𝐴R ∧ 0R ∈ { 0R } ) ↔ ( 𝐴R ∧ 0R = 0R ) )
9 3 4 8 3bitri ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ↔ ( 𝐴R ∧ 0R = 0R ) )
10 1 9 mpbiran2 ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ↔ 𝐴R )