Description: Ordered pair membership in a restriction. Exercise 13 of TakeutiZaring p. 25. (Contributed by NM, 13-Nov-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opelresi.1 | ⊢ 𝐶 ∈ V | |
Assertion | opelresi | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 〈 𝐵 , 𝐶 〉 ∈ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelresi.1 | ⊢ 𝐶 ∈ V | |
2 | opelres | ⊢ ( 𝐶 ∈ V → ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 〈 𝐵 , 𝐶 〉 ∈ 𝑅 ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 〈 𝐵 , 𝐶 〉 ∈ 𝑅 ) ) |