Metamath Proof Explorer


Theorem opelresi

Description: Ordered pair membership in a restriction. Exercise 13 of TakeutiZaring p. 25. (Contributed by NM, 13-Nov-1995)

Ref Expression
Hypothesis opelresi.1 𝐶 ∈ V
Assertion opelresi ( ⟨ 𝐵 , 𝐶 ⟩ ∈ ( 𝑅𝐴 ) ↔ ( 𝐵𝐴 ∧ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 opelresi.1 𝐶 ∈ V
2 opelres ( 𝐶 ∈ V → ( ⟨ 𝐵 , 𝐶 ⟩ ∈ ( 𝑅𝐴 ) ↔ ( 𝐵𝐴 ∧ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝑅 ) ) )
3 1 2 ax-mp ( ⟨ 𝐵 , 𝐶 ⟩ ∈ ( 𝑅𝐴 ) ↔ ( 𝐵𝐴 ∧ ⟨ 𝐵 , 𝐶 ⟩ ∈ 𝑅 ) )