Metamath Proof Explorer


Theorem opelstrbas

Description: The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021)

Ref Expression
Hypotheses opelstrbas.s ( 𝜑𝑆 Struct 𝑋 )
opelstrbas.v ( 𝜑𝑉𝑌 )
opelstrbas.b ( 𝜑 → ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ ∈ 𝑆 )
Assertion opelstrbas ( 𝜑𝑉 = ( Base ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 opelstrbas.s ( 𝜑𝑆 Struct 𝑋 )
2 opelstrbas.v ( 𝜑𝑉𝑌 )
3 opelstrbas.b ( 𝜑 → ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ ∈ 𝑆 )
4 baseid Base = Slot ( Base ‘ ndx )
5 structex ( 𝑆 Struct 𝑋𝑆 ∈ V )
6 1 5 syl ( 𝜑𝑆 ∈ V )
7 structfung ( 𝑆 Struct 𝑋 → Fun 𝑆 )
8 1 7 syl ( 𝜑 → Fun 𝑆 )
9 4 6 8 3 2 strfv2d ( 𝜑𝑉 = ( Base ‘ 𝑆 ) )