Metamath Proof Explorer


Theorem opeluu

Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of Enderton p. 41. (Contributed by NM, 31-Mar-1995) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses opeluu.1 𝐴 ∈ V
opeluu.2 𝐵 ∈ V
Assertion opeluu ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 → ( 𝐴 𝐶𝐵 𝐶 ) )

Proof

Step Hyp Ref Expression
1 opeluu.1 𝐴 ∈ V
2 opeluu.2 𝐵 ∈ V
3 1 prid1 𝐴 ∈ { 𝐴 , 𝐵 }
4 1 2 opi2 { 𝐴 , 𝐵 } ∈ ⟨ 𝐴 , 𝐵
5 elunii ( ( { 𝐴 , 𝐵 } ∈ ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 ) → { 𝐴 , 𝐵 } ∈ 𝐶 )
6 4 5 mpan ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 → { 𝐴 , 𝐵 } ∈ 𝐶 )
7 elunii ( ( 𝐴 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝐵 } ∈ 𝐶 ) → 𝐴 𝐶 )
8 3 6 7 sylancr ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶𝐴 𝐶 )
9 2 prid2 𝐵 ∈ { 𝐴 , 𝐵 }
10 elunii ( ( 𝐵 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝐵 } ∈ 𝐶 ) → 𝐵 𝐶 )
11 9 6 10 sylancr ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶𝐵 𝐶 )
12 8 11 jca ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 → ( 𝐴 𝐶𝐵 𝐶 ) )