Metamath Proof Explorer
		
		
		
		Description:  Ordered pair membership in the universal class of ordered pairs.
       (Contributed by NM, 22-Aug-2013)  (Revised by Mario Carneiro, 26-Apr-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | opelvv.1 | ⊢ 𝐴  ∈  V | 
					
						|  |  | opelvv.2 | ⊢ 𝐵  ∈  V | 
				
					|  | Assertion | opelvv | ⊢  〈 𝐴 ,  𝐵 〉  ∈  ( V  ×  V ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opelvv.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | opelvv.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | opelxpi | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  〈 𝐴 ,  𝐵 〉  ∈  ( V  ×  V ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ 〈 𝐴 ,  𝐵 〉  ∈  ( V  ×  V ) |