Metamath Proof Explorer


Theorem opelvv

Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses opelvv.1 𝐴 ∈ V
opelvv.2 𝐵 ∈ V
Assertion opelvv 𝐴 , 𝐵 ⟩ ∈ ( V × V )

Proof

Step Hyp Ref Expression
1 opelvv.1 𝐴 ∈ V
2 opelvv.2 𝐵 ∈ V
3 opelxpi ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( V × V ) )
4 1 2 3 mp2an 𝐴 , 𝐵 ⟩ ∈ ( V × V )