Metamath Proof Explorer
Description: Ordered pair membership in the universal class of ordered pairs.
(Contributed by NM, 22-Aug-2013) (Revised by Mario Carneiro, 26-Apr-2015)
|
|
Ref |
Expression |
|
Hypotheses |
opelvv.1 |
⊢ 𝐴 ∈ V |
|
|
opelvv.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
opelvv |
⊢ 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opelvv.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
opelvv.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) ) |
| 4 |
1 2 3
|
mp2an |
⊢ 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) |