Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | opelvvg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
2 | elex | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) | |
3 | opelxpi | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) ) | |
4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) ) |