Metamath Proof Explorer


Theorem opelvvg

Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015)

Ref Expression
Assertion opelvvg ( ( 𝐴𝑉𝐵𝑊 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( V × V ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴𝑉𝐴 ∈ V )
2 elex ( 𝐵𝑊𝐵 ∈ V )
3 opelxpi ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( V × V ) )
4 1 2 3 syl2an ( ( 𝐴𝑉𝐵𝑊 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( V × V ) )