Metamath Proof Explorer


Theorem opelxpd

Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses opelxpd.1 ( 𝜑𝐴𝐶 )
opelxpd.2 ( 𝜑𝐵𝐷 )
Assertion opelxpd ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶 × 𝐷 ) )

Proof

Step Hyp Ref Expression
1 opelxpd.1 ( 𝜑𝐴𝐶 )
2 opelxpd.2 ( 𝜑𝐵𝐷 )
3 opelxpi ( ( 𝐴𝐶𝐵𝐷 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶 × 𝐷 ) )
4 1 2 3 syl2anc ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶 × 𝐷 ) )