Metamath Proof Explorer
Description: Ordered pair membership in a Cartesian product, deduction form.
(Contributed by Glauco Siliprandi, 3-Mar-2021)
|
|
Ref |
Expression |
|
Hypotheses |
opelxpd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
|
|
opelxpd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
|
Assertion |
opelxpd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 × 𝐷 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
opelxpd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
2 |
|
opelxpd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
3 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 × 𝐷 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 × 𝐷 ) ) |