| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odd2np1 | ⊢ ( 𝐴  ∈  ℤ  →  ( ¬  2  ∥  𝐴  ↔  ∃ 𝑎  ∈  ℤ ( ( 2  ·  𝑎 )  +  1 )  =  𝐴 ) ) | 
						
							| 2 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 3 |  | divides | ⊢ ( ( 2  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 2  ∥  𝐵  ↔  ∃ 𝑏  ∈  ℤ ( 𝑏  ·  2 )  =  𝐵 ) ) | 
						
							| 4 | 2 3 | mpan | ⊢ ( 𝐵  ∈  ℤ  →  ( 2  ∥  𝐵  ↔  ∃ 𝑏  ∈  ℤ ( 𝑏  ·  2 )  =  𝐵 ) ) | 
						
							| 5 | 1 4 | bi2anan9 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( ¬  2  ∥  𝐴  ∧  2  ∥  𝐵 )  ↔  ( ∃ 𝑎  ∈  ℤ ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ∃ 𝑏  ∈  ℤ ( 𝑏  ·  2 )  =  𝐵 ) ) ) | 
						
							| 6 |  | reeanv | ⊢ ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ( 𝑏  ·  2 )  =  𝐵 )  ↔  ( ∃ 𝑎  ∈  ℤ ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ∃ 𝑏  ∈  ℤ ( 𝑏  ·  2 )  =  𝐵 ) ) | 
						
							| 7 |  | zaddcl | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 𝑎  +  𝑏 )  ∈  ℤ ) | 
						
							| 8 |  | zcn | ⊢ ( 𝑎  ∈  ℤ  →  𝑎  ∈  ℂ ) | 
						
							| 9 |  | zcn | ⊢ ( 𝑏  ∈  ℤ  →  𝑏  ∈  ℂ ) | 
						
							| 10 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 11 |  | adddi | ⊢ ( ( 2  ∈  ℂ  ∧  𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( 2  ·  ( 𝑎  +  𝑏 ) )  =  ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) ) ) | 
						
							| 12 | 10 11 | mp3an1 | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( 2  ·  ( 𝑎  +  𝑏 ) )  =  ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( ( 2  ·  ( 𝑎  +  𝑏 ) )  +  1 )  =  ( ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) )  +  1 ) ) | 
						
							| 14 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  𝑎  ∈  ℂ )  →  ( 2  ·  𝑎 )  ∈  ℂ ) | 
						
							| 15 | 10 14 | mpan | ⊢ ( 𝑎  ∈  ℂ  →  ( 2  ·  𝑎 )  ∈  ℂ ) | 
						
							| 16 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( 2  ·  𝑏 )  ∈  ℂ ) | 
						
							| 17 | 10 16 | mpan | ⊢ ( 𝑏  ∈  ℂ  →  ( 2  ·  𝑏 )  ∈  ℂ ) | 
						
							| 18 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 19 |  | add32 | ⊢ ( ( ( 2  ·  𝑎 )  ∈  ℂ  ∧  ( 2  ·  𝑏 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) )  +  1 )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 2  ·  𝑏 ) ) ) | 
						
							| 20 | 18 19 | mp3an3 | ⊢ ( ( ( 2  ·  𝑎 )  ∈  ℂ  ∧  ( 2  ·  𝑏 )  ∈  ℂ )  →  ( ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) )  +  1 )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 2  ·  𝑏 ) ) ) | 
						
							| 21 | 15 17 20 | syl2an | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) )  +  1 )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 2  ·  𝑏 ) ) ) | 
						
							| 22 |  | mulcom | ⊢ ( ( 2  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( 2  ·  𝑏 )  =  ( 𝑏  ·  2 ) ) | 
						
							| 23 | 10 22 | mpan | ⊢ ( 𝑏  ∈  ℂ  →  ( 2  ·  𝑏 )  =  ( 𝑏  ·  2 ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( 2  ·  𝑏 )  =  ( 𝑏  ·  2 ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 2  ·  𝑏 ) )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 𝑏  ·  2 ) ) ) | 
						
							| 26 | 13 21 25 | 3eqtrd | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( ( 2  ·  ( 𝑎  +  𝑏 ) )  +  1 )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 𝑏  ·  2 ) ) ) | 
						
							| 27 | 8 9 26 | syl2an | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( ( 2  ·  ( 𝑎  +  𝑏 ) )  +  1 )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 𝑏  ·  2 ) ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑐  =  ( 𝑎  +  𝑏 )  →  ( 2  ·  𝑐 )  =  ( 2  ·  ( 𝑎  +  𝑏 ) ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( 𝑐  =  ( 𝑎  +  𝑏 )  →  ( ( 2  ·  𝑐 )  +  1 )  =  ( ( 2  ·  ( 𝑎  +  𝑏 ) )  +  1 ) ) | 
						
							| 30 | 29 | eqeq1d | ⊢ ( 𝑐  =  ( 𝑎  +  𝑏 )  →  ( ( ( 2  ·  𝑐 )  +  1 )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 𝑏  ·  2 ) )  ↔  ( ( 2  ·  ( 𝑎  +  𝑏 ) )  +  1 )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 𝑏  ·  2 ) ) ) ) | 
						
							| 31 | 30 | rspcev | ⊢ ( ( ( 𝑎  +  𝑏 )  ∈  ℤ  ∧  ( ( 2  ·  ( 𝑎  +  𝑏 ) )  +  1 )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 𝑏  ·  2 ) ) )  →  ∃ 𝑐  ∈  ℤ ( ( 2  ·  𝑐 )  +  1 )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 𝑏  ·  2 ) ) ) | 
						
							| 32 | 7 27 31 | syl2anc | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ∃ 𝑐  ∈  ℤ ( ( 2  ·  𝑐 )  +  1 )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 𝑏  ·  2 ) ) ) | 
						
							| 33 |  | oveq12 | ⊢ ( ( ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ( 𝑏  ·  2 )  =  𝐵 )  →  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 𝑏  ·  2 ) )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 34 | 33 | eqeq2d | ⊢ ( ( ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ( 𝑏  ·  2 )  =  𝐵 )  →  ( ( ( 2  ·  𝑐 )  +  1 )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 𝑏  ·  2 ) )  ↔  ( ( 2  ·  𝑐 )  +  1 )  =  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 35 | 34 | rexbidv | ⊢ ( ( ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ( 𝑏  ·  2 )  =  𝐵 )  →  ( ∃ 𝑐  ∈  ℤ ( ( 2  ·  𝑐 )  +  1 )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( 𝑏  ·  2 ) )  ↔  ∃ 𝑐  ∈  ℤ ( ( 2  ·  𝑐 )  +  1 )  =  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 36 | 32 35 | syl5ibcom | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( ( ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ( 𝑏  ·  2 )  =  𝐵 )  →  ∃ 𝑐  ∈  ℤ ( ( 2  ·  𝑐 )  +  1 )  =  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 37 | 36 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ( 𝑏  ·  2 )  =  𝐵 )  →  ∃ 𝑐  ∈  ℤ ( ( 2  ·  𝑐 )  +  1 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 38 | 6 37 | sylbir | ⊢ ( ( ∃ 𝑎  ∈  ℤ ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ∃ 𝑏  ∈  ℤ ( 𝑏  ·  2 )  =  𝐵 )  →  ∃ 𝑐  ∈  ℤ ( ( 2  ·  𝑐 )  +  1 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 39 | 5 38 | biimtrdi | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( ¬  2  ∥  𝐴  ∧  2  ∥  𝐵 )  →  ∃ 𝑐  ∈  ℤ ( ( 2  ·  𝑐 )  +  1 )  =  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 40 | 39 | imp | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  2  ∥  𝐵 ) )  →  ∃ 𝑐  ∈  ℤ ( ( 2  ·  𝑐 )  +  1 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 41 | 40 | an4s | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  ∧  ( 𝐵  ∈  ℤ  ∧  2  ∥  𝐵 ) )  →  ∃ 𝑐  ∈  ℤ ( ( 2  ·  𝑐 )  +  1 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 42 |  | zaddcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  +  𝐵 )  ∈  ℤ ) | 
						
							| 43 | 42 | ad2ant2r | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  ∧  ( 𝐵  ∈  ℤ  ∧  2  ∥  𝐵 ) )  →  ( 𝐴  +  𝐵 )  ∈  ℤ ) | 
						
							| 44 |  | odd2np1 | ⊢ ( ( 𝐴  +  𝐵 )  ∈  ℤ  →  ( ¬  2  ∥  ( 𝐴  +  𝐵 )  ↔  ∃ 𝑐  ∈  ℤ ( ( 2  ·  𝑐 )  +  1 )  =  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 45 | 43 44 | syl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  ∧  ( 𝐵  ∈  ℤ  ∧  2  ∥  𝐵 ) )  →  ( ¬  2  ∥  ( 𝐴  +  𝐵 )  ↔  ∃ 𝑐  ∈  ℤ ( ( 2  ·  𝑐 )  +  1 )  =  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 46 | 41 45 | mpbird | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  ∧  ( 𝐵  ∈  ℤ  ∧  2  ∥  𝐵 ) )  →  ¬  2  ∥  ( 𝐴  +  𝐵 ) ) |