| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oddz |
⊢ ( 𝐴 ∈ Odd → 𝐴 ∈ ℤ ) |
| 2 |
|
evenz |
⊢ ( 𝐵 ∈ Even → 𝐵 ∈ ℤ ) |
| 3 |
|
zaddcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
| 5 |
|
eqeq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 = ( ( 2 · 𝑖 ) + 1 ) ↔ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ) |
| 6 |
5
|
rexbidv |
⊢ ( 𝑎 = 𝐴 → ( ∃ 𝑖 ∈ ℤ 𝑎 = ( ( 2 · 𝑖 ) + 1 ) ↔ ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ) |
| 7 |
|
dfodd6 |
⊢ Odd = { 𝑎 ∈ ℤ ∣ ∃ 𝑖 ∈ ℤ 𝑎 = ( ( 2 · 𝑖 ) + 1 ) } |
| 8 |
6 7
|
elrab2 |
⊢ ( 𝐴 ∈ Odd ↔ ( 𝐴 ∈ ℤ ∧ ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ) |
| 9 |
|
eqeq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 = ( 2 · 𝑗 ) ↔ 𝐵 = ( 2 · 𝑗 ) ) ) |
| 10 |
9
|
rexbidv |
⊢ ( 𝑏 = 𝐵 → ( ∃ 𝑗 ∈ ℤ 𝑏 = ( 2 · 𝑗 ) ↔ ∃ 𝑗 ∈ ℤ 𝐵 = ( 2 · 𝑗 ) ) ) |
| 11 |
|
dfeven4 |
⊢ Even = { 𝑏 ∈ ℤ ∣ ∃ 𝑗 ∈ ℤ 𝑏 = ( 2 · 𝑗 ) } |
| 12 |
10 11
|
elrab2 |
⊢ ( 𝐵 ∈ Even ↔ ( 𝐵 ∈ ℤ ∧ ∃ 𝑗 ∈ ℤ 𝐵 = ( 2 · 𝑗 ) ) ) |
| 13 |
|
zaddcl |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑖 + 𝑗 ) ∈ ℤ ) |
| 14 |
13
|
ex |
⊢ ( 𝑖 ∈ ℤ → ( 𝑗 ∈ ℤ → ( 𝑖 + 𝑗 ) ∈ ℤ ) ) |
| 15 |
14
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) → ( 𝑗 ∈ ℤ → ( 𝑖 + 𝑗 ) ∈ ℤ ) ) |
| 16 |
15
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) → ( 𝑖 + 𝑗 ) ∈ ℤ ) |
| 17 |
16
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) ∧ 𝐵 = ( 2 · 𝑗 ) ) → ( 𝑖 + 𝑗 ) ∈ ℤ ) |
| 18 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑖 + 𝑗 ) → ( 2 · 𝑛 ) = ( 2 · ( 𝑖 + 𝑗 ) ) ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑛 = ( 𝑖 + 𝑗 ) → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) |
| 20 |
19
|
eqeq2d |
⊢ ( 𝑛 = ( 𝑖 + 𝑗 ) → ( ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ↔ ( 𝐴 + 𝐵 ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) ) |
| 21 |
20
|
adantl |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) ∧ 𝐵 = ( 2 · 𝑗 ) ) ∧ 𝑛 = ( 𝑖 + 𝑗 ) ) → ( ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ↔ ( 𝐴 + 𝐵 ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) ) |
| 22 |
|
oveq12 |
⊢ ( ( 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ∧ 𝐵 = ( 2 · 𝑗 ) ) → ( 𝐴 + 𝐵 ) = ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) ) |
| 23 |
22
|
ex |
⊢ ( 𝐴 = ( ( 2 · 𝑖 ) + 1 ) → ( 𝐵 = ( 2 · 𝑗 ) → ( 𝐴 + 𝐵 ) = ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) ) ) |
| 24 |
23
|
ad3antlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) → ( 𝐵 = ( 2 · 𝑗 ) → ( 𝐴 + 𝐵 ) = ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) ) ) |
| 25 |
24
|
imp |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) ∧ 𝐵 = ( 2 · 𝑗 ) ) → ( 𝐴 + 𝐵 ) = ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) ) |
| 26 |
|
2cnd |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → 2 ∈ ℂ ) |
| 27 |
|
zcn |
⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ℂ ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → 𝑖 ∈ ℂ ) |
| 29 |
26 28
|
mulcld |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 2 · 𝑖 ) ∈ ℂ ) |
| 30 |
29
|
ancoms |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 2 · 𝑖 ) ∈ ℂ ) |
| 31 |
|
1cnd |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 1 ∈ ℂ ) |
| 32 |
|
2cnd |
⊢ ( 𝑖 ∈ ℤ → 2 ∈ ℂ ) |
| 33 |
|
zcn |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℂ ) |
| 34 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝑗 ∈ ℂ ) → ( 2 · 𝑗 ) ∈ ℂ ) |
| 35 |
32 33 34
|
syl2an |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 2 · 𝑗 ) ∈ ℂ ) |
| 36 |
30 31 35
|
add32d |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) = ( ( ( 2 · 𝑖 ) + ( 2 · 𝑗 ) ) + 1 ) ) |
| 37 |
|
2cnd |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 2 ∈ ℂ ) |
| 38 |
27
|
adantr |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑖 ∈ ℂ ) |
| 39 |
33
|
adantl |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℂ ) |
| 40 |
37 38 39
|
adddid |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 2 · ( 𝑖 + 𝑗 ) ) = ( ( 2 · 𝑖 ) + ( 2 · 𝑗 ) ) ) |
| 41 |
40
|
eqcomd |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( ( 2 · 𝑖 ) + ( 2 · 𝑗 ) ) = ( 2 · ( 𝑖 + 𝑗 ) ) ) |
| 42 |
41
|
oveq1d |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( ( ( 2 · 𝑖 ) + ( 2 · 𝑗 ) ) + 1 ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) |
| 43 |
36 42
|
eqtrd |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) |
| 44 |
43
|
ex |
⊢ ( 𝑖 ∈ ℤ → ( 𝑗 ∈ ℤ → ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) ) |
| 45 |
44
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) → ( 𝑗 ∈ ℤ → ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) ) |
| 46 |
45
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) → ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) |
| 47 |
46
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) ∧ 𝐵 = ( 2 · 𝑗 ) ) → ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) |
| 48 |
25 47
|
eqtrd |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) ∧ 𝐵 = ( 2 · 𝑗 ) ) → ( 𝐴 + 𝐵 ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) |
| 49 |
17 21 48
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) ∧ 𝐵 = ( 2 · 𝑗 ) ) → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
| 50 |
49
|
rexlimdva2 |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) → ( ∃ 𝑗 ∈ ℤ 𝐵 = ( 2 · 𝑗 ) → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 51 |
50
|
expimpd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) → ( ( 𝐵 ∈ ℤ ∧ ∃ 𝑗 ∈ ℤ 𝐵 = ( 2 · 𝑗 ) ) → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 52 |
51
|
r19.29an |
⊢ ( ( 𝐴 ∈ ℤ ∧ ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) → ( ( 𝐵 ∈ ℤ ∧ ∃ 𝑗 ∈ ℤ 𝐵 = ( 2 · 𝑗 ) ) → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 53 |
12 52
|
biimtrid |
⊢ ( ( 𝐴 ∈ ℤ ∧ ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) → ( 𝐵 ∈ Even → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 54 |
8 53
|
sylbi |
⊢ ( 𝐴 ∈ Odd → ( 𝐵 ∈ Even → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 55 |
54
|
imp |
⊢ ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
| 56 |
|
eqeq1 |
⊢ ( 𝑧 = ( 𝐴 + 𝐵 ) → ( 𝑧 = ( ( 2 · 𝑛 ) + 1 ) ↔ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 57 |
56
|
rexbidv |
⊢ ( 𝑧 = ( 𝐴 + 𝐵 ) → ( ∃ 𝑛 ∈ ℤ 𝑧 = ( ( 2 · 𝑛 ) + 1 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 58 |
|
dfodd6 |
⊢ Odd = { 𝑧 ∈ ℤ ∣ ∃ 𝑛 ∈ ℤ 𝑧 = ( ( 2 · 𝑛 ) + 1 ) } |
| 59 |
57 58
|
elrab2 |
⊢ ( ( 𝐴 + 𝐵 ) ∈ Odd ↔ ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 60 |
4 55 59
|
sylanbrc |
⊢ ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ( 𝐴 + 𝐵 ) ∈ Odd ) |