Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006) (Proof shortened by Andrew Salmon, 29-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
opeq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
Assertion | opeq12d | ⊢ ( 𝜑 → 〈 𝐴 , 𝐶 〉 = 〈 𝐵 , 𝐷 〉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | opeq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
3 | opeq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → 〈 𝐴 , 𝐶 〉 = 〈 𝐵 , 𝐷 〉 ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → 〈 𝐴 , 𝐶 〉 = 〈 𝐵 , 𝐷 〉 ) |