Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| opeq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | opeq12d | ⊢ ( 𝜑 → 〈 𝐴 , 𝐶 〉 = 〈 𝐵 , 𝐷 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | opeq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 3 | opeq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → 〈 𝐴 , 𝐶 〉 = 〈 𝐵 , 𝐷 〉 ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → 〈 𝐴 , 𝐶 〉 = 〈 𝐵 , 𝐷 〉 ) |