Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | opeq1d | ⊢ ( 𝜑 → 〈 𝐴 , 𝐶 〉 = 〈 𝐵 , 𝐶 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | opeq1 | ⊢ ( 𝐴 = 𝐵 → 〈 𝐴 , 𝐶 〉 = 〈 𝐵 , 𝐶 〉 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → 〈 𝐴 , 𝐶 〉 = 〈 𝐵 , 𝐶 〉 ) |