Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
Assertion | opeq2d | ⊢ ( 𝜑 → 〈 𝐶 , 𝐴 〉 = 〈 𝐶 , 𝐵 〉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | opeq2 | ⊢ ( 𝐴 = 𝐵 → 〈 𝐶 , 𝐴 〉 = 〈 𝐶 , 𝐵 〉 ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → 〈 𝐶 , 𝐴 〉 = 〈 𝐶 , 𝐵 〉 ) |