Metamath Proof Explorer


Theorem opeqex

Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008)

Ref Expression
Assertion opeqex ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ → ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) )

Proof

Step Hyp Ref Expression
1 neeq1 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ → ( ⟨ 𝐴 , 𝐵 ⟩ ≠ ∅ ↔ ⟨ 𝐶 , 𝐷 ⟩ ≠ ∅ ) )
2 opnz ( ⟨ 𝐴 , 𝐵 ⟩ ≠ ∅ ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
3 opnz ( ⟨ 𝐶 , 𝐷 ⟩ ≠ ∅ ↔ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) )
4 1 2 3 3bitr3g ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ → ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) )