Metamath Proof Explorer


Theorem opeqsn

Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)

Ref Expression
Hypotheses opeqsn.1 𝐴 ∈ V
opeqsn.2 𝐵 ∈ V
Assertion opeqsn ( ⟨ 𝐴 , 𝐵 ⟩ = { 𝐶 } ↔ ( 𝐴 = 𝐵𝐶 = { 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 opeqsn.1 𝐴 ∈ V
2 opeqsn.2 𝐵 ∈ V
3 opeqsng ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ = { 𝐶 } ↔ ( 𝐴 = 𝐵𝐶 = { 𝐴 } ) ) )
4 1 2 3 mp2an ( ⟨ 𝐴 , 𝐵 ⟩ = { 𝐶 } ↔ ( 𝐴 = 𝐵𝐶 = { 𝐴 } ) )