Metamath Proof Explorer


Theorem opex

Description: An ordered pair of classes is a set. Exercise 7 of TakeutiZaring p. 16. (Contributed by NM, 18-Aug-1993) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opex 𝐴 , 𝐵 ⟩ ∈ V

Proof

Step Hyp Ref Expression
1 dfopif 𝐴 , 𝐵 ⟩ = if ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐵 } } , ∅ )
2 prex { { 𝐴 } , { 𝐴 , 𝐵 } } ∈ V
3 0ex ∅ ∈ V
4 2 3 ifex if ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐵 } } , ∅ ) ∈ V
5 1 4 eqeltri 𝐴 , 𝐵 ⟩ ∈ V