Description: An ordered pair of classes is a set. Exercise 7 of TakeutiZaring p. 16. (Contributed by NM, 18-Aug-1993) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopif | ⊢ 〈 𝐴 , 𝐵 〉 = if ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐵 } } , ∅ ) | |
2 | prex | ⊢ { { 𝐴 } , { 𝐴 , 𝐵 } } ∈ V | |
3 | 0ex | ⊢ ∅ ∈ V | |
4 | 2 3 | ifex | ⊢ if ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐵 } } , ∅ ) ∈ V |
5 | 1 4 | eqeltri | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V |